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1. Introduction

Historically, tests of the Geometric Brownian Motion
(GBM) model for security prices—and for that matter
any diffusion process—have been performed by selecting
a fixed interval of time (one day, one week, one month)
�t and then using the increments in logarithmic price
� ln½P� over the predetermined �t. Under the classical
specification of the GBM model, the logarithmic price
increments � ln½P� should be statistically independent
from each other and these increments � ln½P� should be
Normally distributed with a mean and variance that is
proportional to the time increment �t. This approach
has a long tradition in finance. Research done in the
1950s by Kendall (1953) and Osborne (1959) as well as
the work by Fama (1970) all the way through to the
contemporary work of Campbell et al. (1997) based on
Lo and MacKinlay (1988) focuses on a particular time
interval �t.

Thus, for example, Kendall (1953) looked at a time
increment of �t ¼ one week on the New York Stock
Exchange, and concluded that the logarithmic price
increments � ln½P� have a statistically insignificant serial
correlation in addition to being (approximately) normally
distributed. In another study, Fama (1970) looked at the
30 Dow Jones Industrial stocks with a �t ¼ one day,
and concluded that there is a statistically significant
positive serial correlation in logarithmic price increments
� ln½P�. Poterba and Summers (1988) found that for
a �t ¼ three years, the logarithmic price increments
� ln½P� exhibit a statistically significant negative serial
correlation which translates into a long-term mean
reversion in prices. Among the many recent studies that
document violations of the GBM by looking at the
time series properties of returns to various financial

instruments are Bakshi et al. (2000), Bollerslev et al.
(1992), Cont (2001), Cont and da Fonseca (2002),
and Nelson (1991).

Nevertheless, the broad unifying methodology of
this large literature is to select a time interval and
then investigate price increments vis a vis that time
interval. Hence, it is quite common to hear that the
GBM-Lognormal model is rejected for hourly data
while it is accepted for monthly data but rejected
again for yearly data or some combination thereof.
In fact, this was the recent conclusion of Levy and
Duchin (2004).

In this paper we propose an alternative way of
thinking about the appropriate distribution. We investi-
gate the GBM model for fixed � ln½P� intervals as
opposed to fixed �t intervals. In other words, we start
at the beginning of a time series and judiciously select
a price increment � ln½P� ¼ d (for example, 1%) and
then measure the amount of time �1 it takes the security
to move the pre-specified quantity. After the security
has moved by � ln½P� ¼ d, we measure the time �2 at
which the security moves an additional � ln½P� ¼ d
and so on and so forth. The final result is a collection
of time increments ð�iþ1 � �iÞ for each pre-specified
� ln½P�. We then compare (statistically) the empirical
distribution of the ð�iþ1 � �iÞ’s to the theoretical distri-
bution they should obey under the GBM model. If,
indeed, the price increments are normal, then the
ð�iþ1 � �iÞ’s—for each particular � ln½P�—should obey
the Inverse Gaussian (or Wald) distribution as a result
of the Space–Time duality that exists for Brownian
motion. We select an entire spectrum of � ln½P�’s
(for example, from 1% all the way to 15%) and
then extract the appropriate sample of �i’s (for each
� ln½P�) so as to measure goodness of fit and estimate
confidence intervals for the implied drift and diffusion
coefficients. Our approach should not be confused
with, and is very different from, the paradigm of spectral
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analysis. Spectral analysis attempts to uncover cycles
in the underlying process by fitting sine and cosine
functions to the data. See, for example, Granger and
Morgenstern (1963).

To our knowledge, this is the first study of its kind
which attempts to verify a particular parametric form
and estimate parameters via this duality methodology.
This study will also shed light on the persistence
of trend as a function of price momentum as well as
the velocity of the price process. If mean reversion
behaviour exists in the S&P 500, larger price increments
and their respective collection of �i’s will exhibit
smaller implied drifts and diffusion coefficients as well
as a ‘poorer fit’ to the Inverse Gaussian distribution.
We find the reverse, with larger drift and diffusion
coefficients and a better fit to the Inverse Gaussian
distribution with larger increments.

In addition—although we do not pursue this directly
within the paper—investigating the data via the space/
time dual has implications to option pricing, since the
optimal exercise policy of an American option revolves
around the first passage time (FPT) to a given curve in
space/time. The option can therefore be expressed and
calibrated to a function of the FPT. We pursue this in a
follow-up paper by Kamstra and Milevsky (2005).

The rest of this paper is organized as follows.
In order for the paper to be self-contained, section 2
summarizes the theoretical properties of the Inverse
Gaussian distribution and demonstrates its relationship
to the first passage time of a Brownian Motion. Section
3 discusses the issue of parameter and confidence interval
estimation for the Inverse Gaussian distribution vis a vis
the first passage time distribution. The empirical results
using the SP 500 as a test case are tabulated in section 4.
In that section we estimate the implied drift and diffusion
coefficients by implementing the algorithm developed
in the previous sections. Conclusions and directions for
further research are offered in section 5.

2. The first passage time distribution

Let Pt denote the price of a security or index at time t� 0.
The standard (a.k.a. Black–Scholes) assumption in
finance is to assume that the dynamics of Pt obey the
following stochastic differential equation:

dðln½Pt�Þ ¼ � dtþ � dBt: ð1Þ

The parameter � is often called the geometric mean return
or growth rate so that MED½P1� ¼ P0 e

� and the expected
value is E½P1� ¼ P0 e

�þ0:5�2 . Either way, we let Xt ¼ ln½Pt�,
which simplifies the main diffusion process to

dXt ¼ � dtþ � dBt: ð2Þ

Thus, the logarithm of security (or index) prices obeys a
non-standard Brownian motion with drift. Let us now
start at some point in time denoted by zero, such that
X0 ¼ x0. Furthermore, choose an increment denoted
by d. Let

�1 ¼ inffs;Xs � x0 þ dg: ð3Þ

Likewise, let

�2 ¼ inffs;Xs � X�1 þ dg: ð4Þ

Further,

�3 ¼ inffs;Xs � X�2 þ dg: ð5Þ

Finally,

�i ¼ inffs;Xs � X�i�1 þ dg: ð6Þ

Thus, ð�iþ1 � �iÞ is the sequence of first passage times of
the stochastic process Xt to the barriers demarcated
by increments of d. It corresponds to the random amount
of time it takes the stochastic process Pt to move by
ed � 1 ¼ D percent. In can be shown (see Seshadri (1993)
or Wasan (1969)) that the probability density function of
the time increments is Inverse Gaussian distributed. The
probability density function (pdf) of the Inverse Gaussian
(IG) random variable is a two-parameter (�, �) function
that can be expressed as follows:

gðt j �, �Þ ¼

ffiffiffi
�
pffiffiffiffiffiffiffiffiffi
2pt3
p exp �

�ðt� �Þ2

2�2t

 !
, t > 0: ð7Þ

The pdf is defined for �>0 and �>0. The mean
(expected value) of the Inverse Gaussian random
variable is �, while the variance is �3=�. The cumulative
distribution function (c.d.f.), which we denote by
GðT j �, �Þ, of the Inverse Gaussian random variable
cannot be expressed in closed form; however, it can be
expressed as a function of the c.d.f. of the standard
normal random variable �½x� in the following elegant
way (see Chhikara and Folks (1989) for details):

GðT j �, �Þ ¼
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For the first passage time, the parameters will be � ¼ d=�
and � ¼ d2=�2. Thus, the expected amount of time it will
take the stochastic process Pt to move D percent is d=�,
and the variance in the amount of time will be d�2=�3.

3. Parameter estimation

The Maximum Likelihood Estimate for the value of � is

�̂� ¼
1

n

Xn
i¼1

�i: ð9Þ

It is also an unbiased estimate for the value of �. The
UMVUE for � is

�̂� ¼
n� 1Pn

i¼1½ð1=�iÞ � ð1=�̂�Þ�
: ð10Þ

See Wasan (1969) for a derivation of the confidence
intervals for �, �.
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A ð1� �Þ percent confidence interval for the value of � is

�̂�

n� 1
� �2�=2 � � �

�̂�

n� 1
� �21��=2

 !
, ð11Þ

where �2�=2 denotes the value from the chi square distribu-
tion with n� 1 degrees of freedom. Since � ¼ d2=�2, we
can obtain a ð1� �Þ percent confidence interval for the
value of �:

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Likewise, a ð1� �Þ percent confidence interval for �
is (where t1��=2 denotes the value from the student t
distribution, with n degrees of freedom)

�̂� 1þ

ffiffiffiffiffiffi
�̂�

n�̂�

s
� t1��=2

2
4

3
5
�1

� � � �̂� 1�

ffiffiffiffiffiffi
�̂�

n�̂�

s
� t1��=2

2
4

3
5
�1

0
B@

1
CA,
ð13Þ

provided that ð�̂�=n�̂�Þ1=2 � t1��=2 < 1. Otherwise, the
confidence interval is
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Now, since � ¼ d=�, by inverting the confidence interval
for � we can obtain a C.I. for �,

d 1�
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provided that ð�̂�=n�̂�Þ1=2 � t1��=2 < 1. Otherwise, the
confidence interval for � is
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In general, small data sets tend to result in one-sided
confidence intervals.

4. Empirical results

Using the principles set out in the previous section we can
now derive point estimates and confidence intervals for
the values of �, �—the expected growth rate and volatility
of returns—as implied from �, � from the first passage
time data. We used the daily closing prices on the S&P
500 cash index, for a period of time spanning January
1952 to December 2003, resulting in 13 109 data points
for the stochastic process Pt. We then computed the
amount of time it takes the S&P 500 to move a pre-
specified percentage D. Under the Null Hypothesis that
Pt obeys a geometric Brownian motion, the collection of
these time increments should obey an Inverse Gaussian
distribution.

Figure 1 shows a graphical representation of the con-
fidence interval for � as a function of the percent incre-
ment. The line indicated with circles is the point estimate
of the expected return, while the solid dotted lines indicate
the plus or minus two standard deviation confidence
about the mean. As one can see, larger increments in
space imply a larger range for the � of the diffusion
process and somewhat larger point estimates. Figure 2
shows a graphical representation of the confidence inter-
val for � as a function of the percent increment, again
with the line of circles representing the point estimate,
now of the volatility, and the solid dotted lines the
confidence interval about that point estimate. In this
case we obtain a more dramatic result with larger incre-
ments in space, implying a much larger value for the �.

Recall that in theory—under the constant parameter
GBM assumption—both graphs should be flat to within
statistical variations and the size of the data set. It is
important to note, however, that the kink in this graph
may be due in part to sample-size truncation issues
involved with using daily returns. After all, if we are
searching for 1% moves and are only looking at daily
numbers there is a (strong) chance that the S&P 500
moved up by more than 1% during the course of the
day, and then reversed itself to close at a less-than-1%
change. The cumulative effect of this truncation is that we
(erroneously) conclude the market did not increase by
1%—when it did—and thus the underlying drift is not
as high. This has far reaching implications beyond just
intra-day moves. For example, the market might take
3.2 trading days to increase by 1%, but in our data set
it will be recorded as (much longer) four trading days,

Figure 1. S&P 500 1952–2004 return mean estimate, with
confidence interval.
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which creates an artificial downward bias on the implied �
and �. Of course, as we increase the size of D, the extent
to which this occurs is much less, since it is highly unlikely
that we missed a 10% move in the S&P 500 because we
only examined daily closing prices.

Table 1 displays the point estimates for the parameters
�, �, �, � and associated standard estimates, together with
the number of data points that were observed. Thus, for
example, there were only 27 movements of 15% between
1952 and 2004. This small number may limit the infer-
ences we can draw from this data set from 15% moves.
Table 2 displays the 95% confidence intervals for the
above-mentioned parameter values. Recall that under
the constant parameter GBM assumption the estimated
values for �, � should only depend on the (logarithmic)
space increment d, via the relationship � ¼ d=�
and � ¼ d2=�2. Thus, if the �, � for the return generating
process are truly constant, then, for example, the � value
estimated for d ¼ 2% increments should be twice the
� value estimated at d ¼ 1% increments. As tables 1
and 2 indicate this is not the case and the parameter
estimates are not scaling by d and d2. Once again, this is
an indication that the underlying generating process
is likely not GBM with constant parameters, though
this result may also be due in part to sample-size
truncation issues involved with using daily returns, as
discussed above.

Table 3 displays the results from performing a
Kolmogorov–Smirinov (KS) test for goodness-of-fit of
the crossing time intervals to an Inverse Gaussian distri-
bution. It is interesting to note that, within any given

increment d above the 1% case, the data does not fail a
KS test for goodness-of-fit to an Inverse Gaussian distri-
bution. And, while some of this might be due to the low
power of the KS test, a casual examination of the data
shows that the plots of the CDF of the data versus the
Inverse Gaussian distribution (figures 3–9) reveals a good
match between the empirical and theoretical distribution,
in particular where the data is most dense, up to the 70th
percentile or so of the cumulative.

5. Extension to non-lognormal returns

As mentioned earlier, the First Passage Time (FPT) dis-
tribution of the logarithmic prices Xt to a level D will
satisfy an Inverse Gaussian (I.G.) distribution if and
only if the logarithmic prices themselves are Normally
distributed. Indeed, when the process Xt is something
other than a non-standard Brownian motion, i.e. when
eXt is no longer a geometric Brownian motion, the collec-
tion of time increments �i will not be I.G. and, although
it is beyond the scope of this paper to derive and present
FPT distributions for all possible parameterization of Xt,
in this section we briefly describe how one could go about
deriving a related probability for a general process and
thus use the space–time duality method for investigating
more general diffusions.

In order to adhere to common notation and terminol-
ogy in the continuous-time finance literature, assume the
price process itself obeys the following one-dimensional
diffusion:

dYt ¼ �ðYt, tÞYt dtþ �ðYt, tÞYt dBt, Y0 ¼ y: ð17Þ

This representation covers our earlier geometric
Brownian motion—when �ðYt, tÞ ¼ �þ 0:5 �2 and
�ðYt, tÞ ¼ � are constants—as well as more general
mean reverting and time-dependent cases. In this case,
the probability H(y, t) that Yt hits or breaches a level
denoted by D during a time period denoted by t, satisfies
a so-called Kolmogorov partial differential equation
(PDE), denoted by

@Hðy, tÞ

@t
þ �ðy, tÞy

@Hðy, tÞ

@y
þ
1

2
�2ðy, tÞy2

@H2
ðy, tÞ

@y2
¼ 0,

ð18Þ

where the current position of the process (x, s) is implicit
in the notation, with a terminal condition HðD, sÞ ¼ 1, if
D> y and zero otherwise as well as a boundary condition
HðD, tÞ ¼ 1 if y � D. See the book by Oksendal (2004)
for more details. Thus, for example, under a particular
parameterization of equation (17), we can solve for the
probability of observing a D ¼ 1% move within a
s¼ 1-day period. We can then compare the theoretical
probability dictated by equation (18) against the observed
frequency of 1% moves in one day. And although this is
not exactly the FPT density, we can employ standard
goodness-of-fit methods to test whether in fact the origi-
nal (dual) diffusion Yt satisfies the postulated process in
question.

Figure 2. S&P 500 1952–2004 return volatility estimate, with
confidence interval.
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In some cases, equation (18) can be solved analytically,
as we implicitly did earlier in the paper. Of course, under
the most general cases for �ðy, tÞ and �ðy, tÞ, one must
resort to numerical methods. Nevertheless, it is possible
to obtain the hitting/crossing probabilities for processes
other than simple Brownian motions which opens the
door for an alternative method of calibrating and testing
the return generating process for investment returns.

6. Conclusions

We have proposed an alternative method for calibrating
financial diffusions. We choose a specific increment in
price space, say a 1% return barrier, and examine the
amount of time it takes the stochastic process to move
the predetermined increment. This is instead of focusing
on a particular increment in time—such as an hour, day or

month—as do most conventional estimation procedures.
This methodology benefits from its ability to capture
changes in distribution that depend on the price (space)
increment in question. We also believe this approach
better fits the perspective and needs of investors who
are interested in how long they will have to wait in
order to achieve pre-specified target returns. Our empiri-
cal results re-enforce previous results obtained in the lit-
erature that the stochastic price process for S&P 500
equity returns does not conform to the standard geo-
metric Brownian motion (GBM) model as evidenced by
the fact that our implied growth and volatility rates are
not constant. Interestingly, we do find a reasonably good
fit of the GBM to first passage time data for any given
fixed barrier, but these parameters are unstable across
different return barriers. In other words, if we only had
access to historical data for how long it took the S&P 500
to grow x%—as opposed to the daily or monthly

Table 1. S&P 500 annualized percentage returns 1952/01/01–2003/12/31.

Barrier
(%) n � (std) � (std) � (std) � (std)

1 299 6.2 (0.96) 6.69 (0.27) 0.161 (0.025) 0.022 (0.002)
2 175 7.26 (1.2) 8.35 (0.45) 0.276 (0.046) 0.057 (0.006)
3 122 7.58 (1.24) 8.61 (0.55) 0.396 (0.065) 0.121 (0.016)
4 95 7.87 (1.23) 8.55 (0.62) 0.508 (0.079) 0.219 (0.032)
5 77 8.02 (1.45) 10.03 (0.81) 0.624 (0.113) 0.249 (0.04)
6 64 8 (1.41) 9.76 (0.86) 0.751 (0.132) 0.378 (0.067)
7 56 8.16 (1.51) 10.48 (0.99) 0.858 (0.159) 0.447 (0.084)
8 49 8.16 (1.53) 10.63 (1.07) 0.98 (0.185) 0.565 (0.114)
9 44 8.26 (1.44) 9.98 (1.06) 1.089 (0.19) 0.813 (0.173)
10 40 8.29 (1.56) 10.83 (1.21) 1.206 (0.227) 0.853 (0.191)
11 36 8.21 (1.52) 10.58 (1.25) 1.342 (0.25) 1.08 (0.255)
12 33 8.37 (1.74) 11.98 (1.47) 1.433 (0.298) 1.002 (0.247)
13 31 8.39 (1.63) 11.26 (1.43) 1.55 (0.301) 1.332 (0.338)
14 28 8.27 (1.6) 11 (1.47) 1.694 (0.328) 1.621 (0.433)
15 27 8.39 (1.71) 11.9 (1.62) 1.787 (0.365) 1.59 (0.433)

Using daily returns from S&P 500 for the period 1950 to 2004, the table displays point estimates for the parameters �, �, �, �. Note that the �, �

parameters are estimated directly from the data, while the �, � are ‘solved’ by the analytic relationship between the Inverse Gaussian and Normal

distribution.

Table 2. S&P 500 95% confidence interval 1952/01/01–2003/12/31.

Barrier
(%) n � � � �

1 299 (4.32 8.08) (6.16 7.22) (0.11 0.21) (0.02 0.03)
2 175 (4.91 9.61) (7.47 9.23) (0.19 0.37) (0.05 0.07)
3 122 (5.15 10.01) (7.53 9.69) (0.27 0.52) (0.09 0.15)
4 95 (5.46 10.28) (7.33 9.77) (0.35 0.66) (0.16 0.28)
5 77 (5.18 10.86) (8.44 11.62) (0.4 0.85) (0.17 0.33)
6 64 (5.24 10.76) (8.07 11.45) (0.49 1.01) (0.25 0.51)
7 56 (5.2 11.12) (8.54 12.42) (0.55 1.17) (0.28 0.61)
8 49 (5.16 11.16) (8.53 12.73) (0.62 1.34) (0.34 0.79)
9 44 (5.44 11.08) (7.9 12.06) (0.72 1.46) (0.47 1.15)
10 40 (5.23 11.35) (8.46 13.2) (0.76 1.65) (0.48 1.23)
11 36 (5.23 11.19) (8.13 13.03) (0.85 1.83) (0.58 1.58)
12 33 (4.96 11.78) (9.1 14.86) (0.85 2.02) (0.52 1.49)
13 31 (5.2 11.58) (8.46 14.06) (0.96 2.14) (0.67 1.99)
14 28 (5.13 11.41) (8.12 13.88) (1.05 2.34) (0.77 2.47)
15 27 (5.04 11.74) (8.72 15.08) (1.07 2.5) (0.74 2.44)

The table displays the 95% confidence interval for the estimated parameters �, �, �, �.
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returns—we could not reject the Null Hypothesis that
equity returns are lognormally distributed. It is only
when we compare the implied parameters across price
increments that the GBM model fails. And, although

some of this instability may come from the coarseness
of our data, measured daily, it is unlikely to be solely
due to this truncation time issue since this effect persists
at larger increments as well.

Figure 3. Barrier¼ 1%.

Figure 4. Barrier¼ 2%.

Figure 5. Barrier¼ 3%.

Table 3. S&P 500 1952/01/01–2003/12/31.

Barrier Data
(%) points K.S. value R/NR at 10% sig.

1 299 1.298 Reject
2 175 0.783 Do not reject
3 122 0.684 Do not reject
4 95 0.784 Do not reject
5 77 0.611 Do not reject
6 64 0.874 Do not reject
7 56 0.609 Do not reject
8 49 0.511 Do not reject
9 44 0.633 Do not reject
10 40 0.549 Do not reject
11 36 0.629 Do not reject
12 33 0.671 Do not reject
13 31 0.576 Do not reject
14 28 0.675 Do not reject
15 27 0.570 Do not reject

The table displays results from a Kolmogorov–Smirinov (K.S.) good-

ness-of-fit test of the data—for each level of D—against an Inverse

Gaussian (I.G.) distribution. The Null Hypothesis for our K.S. test is

that the data was generated from an I.G. distribution with �, � param-

eters specified in table 2. The Null Hypothesis is rejected if the test

statistic is ‘too large’, which means that the distance between the

empirical CDF and candidate CDF are ‘too far’ from each other.

At the 5% significance level the critical value of the K.S. statistic

is approximately 1.358 and at the 10% significance the critical value is

approximately 1.223.
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Figure 9. Barrier¼ 15%.Figure 7. Barrier¼ 5%.

Figure 6. Barrier¼ 4%. Figure 8. Barrier¼ 10%.
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This study also sheds light on mean reversion in returns.
If mean reversion behaviour exists in the S&P 500,
larger price increments and their respective collection of
first passage times should exhibit smaller implied drifts
and diffusion coefficients as well as a ‘poorer fit’ to the
Inverse Gaussian distribution. We find the reverse, with
larger drift and diffusion coefficients and a better fit to
the Inverse Gaussian distribution with larger increments.

Further research entails calibrating and testing first
passage times for alternative prices processes—such as
currencies, commodities and interest rates—at higher
frequency and in particular on individual stocks. The
same principle of space time duality can be used to derive
the distribution of first passage times for other stochastic
processes. Along these lines, the authors (Kamstra and
Milevsky 2005) are currently working on classifying
the FPT distribution for processes such as stochastic
volatility and mean reverting diffusions with applications
to American option pricing. Indeed, even if returns are
generated by infinite variance stable distributions, as
originally argued by Mandelbrot (1963), then the finite
variance first passage times could be analysed instead of
the actual returns.
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