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A core tenet of financial economics states that, in a market populated by rational investors,

the fundamental price of an asset equals the expected discounted present value of its future

cashflows. This implies that in a rational and efficient market, and in the absence of price

bubbles,2 stock price movements are driven by forecasted changes in dividends and

discount rates and not by the “irrational exuberance” of traders. Interest in the extent to

which stock prices are fundamentally driven has been particularly high of late, with

everyone from academics to the Chairman of the U.S. Federal Reserve Board offering

opinions. Research into fundamental valuation is therefore particularly timely and, at least

for the type of computer-intensive research we undertake in this chapter, is made possible

by recent increases in computing power available to financial econometricians.

Several different procedures have been developed to estimate fundamental stock prices and

to test whether market prices deviate in significant ways from the estimated fundamental

price. Many studies have reported what appear to be important deviations from

fundamentals, especially around market crashes such as those which occurred in 1929 and

1987. The resulting belief that financial markets may be “excessively volatile”, and may

potentially contain “price bubbles” that push market prices way from fundamental

valuations, has contributed to the institution of policies such as trading halts in the face of

large price moves. Whether such policies help or hurt financial markets depends in

important ways on the extent to which market prices are driven by fundamental factors as

opposed to “irrational exuberance”, and the answer to this question crucially depends on

the accuracy of the fundamental price estimates and tests used in the analysis.

To the best of our knowledge, no one has yet undertaken a thorough and systematic

investigation of the accuracy of various fundamental price estimating and testing

procedures.3 Thus, while a fundamentals-estimation exercise might value a share of stock at

2The term “bubble” is formally defined below, but for now can be thought of as a situation in which
some force other than a “fundamental factor”, such as dividends and discount rates, drives stock prices.

3Bollerslev and Hodrick (1995) provide a survey of much of this literature, and themselves use simulation
techniques to investigate tests of market efficiency. Bollerslev and Hodrick (1995) focus much of their
simulation study on the constant discount rate case and consider only one ad hoc model for time-varying
discount rates. This ad hoc model, like the constant discount rate case, allows an analytic solution for the
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$X, we cannot be sure how confident to be in the estimate. For example, the estimate could

be biased up or down and/or be very imprecise (i.e., have a large variance). With a small

bias and low variance the estimate might be very accurate and therefore of considerable

use. Conversely, a significantly biased estimate with very low precision might be wildly

inaccurate and thus of little value. Establishing the properties of various fundamentals

estimation and testing procedures would therefore be of significant benefit to academics,

investors and policy makers who often employ fundamental price estimates in their work.

The accuracy of fundamental price estimates can be obtained analytically under only very

restrictive and special circumstances (such as assuming that dividend growth rates and

interest rates will never change in the future, which is of course highly unrealistic). To

circumvent this analytical intractability, we develop and test in this chapter a

simulation-based method for calculating the properties of various fundamental price

estimating and testing procedures. We are particularly interested in determining the

statistical properties of fundamental price and return estimates commonly used in both

industry and academia and in investigating the effects that estimation inaccuracies may

have on the variety of volatility tests commonly employed in the literature.

Our strategy in this chapter is as follows: (a) use financial market data to estimate

time-series models for dividend growth and discount rates, (b) use these models to simulate

dividend growth and discount rate paths for a variety of possible economies that do not

contain bubbles, (c) calculate fundamental prices for these bubble-free economies based on

the simulated dividend growth and discount rates – which prices we call “market prices”

since they are fair-value prices for the simulated market economies, (d) use various

fundamental valuation models to estimate fundamental prices for each of the simulated

economies, and (e) compare market prices versus fundamental prices and investigate

statistical properties of common tests for excess volatility and bubbles in stock prices using

market price. We consider formal discount rate processes that admit serial dependence and hence rule out a
general analytic solution. Allowing serial dependence in discount rates considerably complicates the analysis,
but also considerably enriches the range of possible dynamics for prices and returns.
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the data we simulated data under the (true) null hypothesis that there are no price

bubbles. We apply this procedure to S&P 500 stock price data.

Results produced using our computer-aided techniques suggest that, while stock prices are

indeed volatile, they are not more volatile than one would reasonably find in an economy

driven by fundamentals, thereby suggesting that market prices are not “excessively

volatile”. We also find that traditional tests for excess volatility and bubbles over-reject a

true null of no-bubbles in samples of the size traditionally employed in the literature.

Indeed, most tests we investigate find overwhelming evidence of bubbles in data series we

construct under the conditions that there are no bubbles. In other words, we demonstrate

that traditional tests for price bubbles frequently find bubbles in data that do not in fact

contain bubbles.

In Section I below we describe a variety of common fundamental pricing models and tests

for excess volatility and bubbles. In Section II we present our Monte Carlo procedure for

estimating fundamental prices/returns and investigating test performance. We discuss the

results of our efforts in Section III. Section IV concludes.

I. Fundamental Pricing Methods and Tests

Define PM
t as a stock’s beginning-of-period-t market price, rt as the rate used to discount

payments received during period t, and Et {·} as the conditional expectation operator, with

the conditioning information being the set of information available to investors at the

beginning of period t. Investor rationality requires that the current market price of a stock,

which will pay a dividend Dt+1 at the beginning of period t + 1 and then immediately sell

for the ex-dividend market price PM
t+1, satisfy Equation 1.

PM
t = Et

{
PM

t+1 + Dt+1

1 + rt

}
(1)
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We can solve Equation 1 forward to period T (where T > t) and substitute realized

dividends and discount rates in for their expected values to produce Equation 2.

PX
t =

T−t∑

i=1

(
Πi

k=1

[
1

1 + rt+k−1

])
Dt+i +

(
ΠT−t

k=1

[
1

1 + rt+k−1

])
PM

T (2)

The superscript X on the left-hand-side price indicates that this is the ex post rational

price; i.e., the price that an investor would have rationally paid for the stock had she

known that the market price of the stock in period T was going to be PM
T and that the

stock was going to pay the sequence of dividends that it actually paid between periods t

and T . The ex post rational price is not a fundamental price, nor is it a price that would

ever be observed in the marketplace. However, for reasons explained below, it is

nonetheless useful in analyzing price behavior.

I.A. Fundamental Pricing Models

To calculate the fundamental price of stock, we need to solve Equation 1 forward into

infinite time under the transversality condition that the expected present value of the

market price PM
t+i falls to zero as i goes to infinity; i.e., there are no price “bubbles”. This

produces the familiar result that today’s fundamental stock price, P F
t , equals the expected

present value of future dividends; i.e.,

P F
t = Et

{ ∞∑

i=1

(
Πi

k=1

[
1

1 + rt+k−1

])
Dt+i

}
. (3)

Note from Equation 3 that the fundamental price is a function only of dividends, discount

rates and time, and not of the market price.

Defining the growth rate of dividends during period t as gt ≡ (Dt+1 −Dt)/Dt allows the

preceding equation to be rewritten as:
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P F
t = DtEt

{ ∞∑

i=1

(
Πi

k=1

[
1 + gt+k−1

1 + rt+k−1

])}
, (4)

or, defining the discounted dividend growth rate as yt ≡ (1 + gt)/(1 + rt),

P F
t = DtEt

{ ∞∑

i=1

Πi
k=1yt+k−1

}
. (5)

This can be rewritten as shown in Equation 6 below (note that yt is not in the time t

information set since it depends on Dt+1 through gt):

P F
t = Dt

∞∑

i=1

Et

{
Πi

k=1yt+k−1

}
. (6)

In practice, fundamental valuation calls for forecasting future discounted dividend growth

rates (i.e., dividends and discount rates) to solve for the sum product in Equation 4 (or,

equivalently, Equation 6). Since Equation 4 cannot be solved analytically in general, this

usually requires that some restrictive assumptions be made concerning the time series

processes driving dividends and discount rates. The simplest approach, introduced by

Gordon (1962), is to assume that discount rates and dividend growth rates will be constant,

at r and g respectively, for all future time so that Equation 4 reduces to Equation 7, in

which the superscript G denotes the Gordon-model fundamental price estimate:

PG
t = Dt

[
1 + g

r − g

]
. (7)

The Gordon model is certainly convenient, but its extremely restrictive assumptions of

constant r and g do not tend to produce the most accurate valuations possible. Several
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attempts have therefore been made to relax Gordon’s original restrictions and yet still

retain an analytical solution to Equation 4. The literature in this area is rather large and

includes papers by Malkiel (1963), Fuller and Hsia (1984), Brooks and Helms (1990),

Hurley and Johnson (1994, 1998) and Yao (1997), among others. Early literature in this

area broke future time into several “chunks”, with dividend growth and discount rates

constant within each time-chunk, but different between chunks. For example, dividends

might be forecasted to grow at a “high rate” for the first three years, and then grow at

some “normal rate” for the rest of time, so that sum in Equation 4 would be broken into

two parts, each part solved separately, and then added together (see, for example, Brooks

and Helms (1990)).

Recent work on extending the Gordon model has largely focused on allowing for more

complicated time-series behavior of dividends and discount rates, while retaining the

ability to solve Equation 4 analytically. Two particularly good examples, found in Yao

(1997), are the additive Markov model (Equation 1 of Yao (1997)) and the geometric

Markov model (Equation 2 of Yao (1997)). These appear below as Equation 8 and

Equation 9, respectively,

PADD
t = Dt−1/r +

[
1/r + (1/r)2

] (
qu − qd

)
∆ (8)

PGEO
t = Dt−1

[
1 + (qu − qd)∆%

r − (qu − qd)∆%

]
(9)

in which qu is the proportion of the time the dividend increases, qd is the proportion of the

time the dividend decreases, ∆ =
∑T

t=2 |Dt −Dt−1|/(T − 1) is the average absolute value of

the level change in the dividend payment, and ∆% =
∑T

t=2 |(Dt −Dt−1)/Dt−1|/(T − 1) is

the average absolute value of the percentage rate of change in the dividend payment.

Donaldson and Kamstra (1996, 2000) develop an alternative approach (hereafter referred

to as the DK procedure) which does not require that Equation 4 be solved analytically.
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The DK procedure instead uses Monte Carlo methods to solve Equation 4 numerically.

The DK procedure eases the conditional constancy restrictions on dividend growth rates

and discount rates of the Gordon procedure by modeling the discounted dividend growth

rate – y in Equation 6 – explicitly as conditionally time-varying. The basic idea of the DK

procedure is to estimate an econometric model for the time series behavior of yt+i (the

discounted dividend growth rate) in Equation 6 (which is equivalent to Equation 4), use

this model and randomly-drawn innovations to simulate time-paths for the possible future

evolution of yt+i, then take the present value of the forecasted time-paths to find a

fundamental price. This is done thousands (even millions) of times, with a different

sequence of randomly-drawn innovations each time, so as to integrate out the expectation

in Equation 6 and thus produce a numerical (as opposed to analytical) estimate of the

fundamental price.

———– Exhibit 1 goes here ———-

The sequence of steps employed to produce a DK fundamental price estimate are described

below and depicted in Exhibit 1.

Step A: Use in-sample data to specify and estimate an econometric model for

conditionally time-varying yt.

Step B: Use the estimated model from Step A and data up to period t to simulate,

out-of-sample, possible realizations of yt+i ; i = 1, ..., I, where I is chosen to be very large

(infinity, were it practical),4 for a cross section of J different possible economies, so that we

follow the evolution of y across a panel of J simulated economies over I periods of time.

We accomplish this by using the estimated model from Step A to make a conditional mean

forecast of y, noted ŷt, then simulate a population of J possible shocks around the mean

4Note that as I increases, the product ΠI
i=1yt+i converges to zero since y is less than unity in steady

state. We found that in practice I = 400 was easily sufficient to have our simulations converge to the point
where increasing I had no impact on the fundamental price. In other words, a dividend received 400 years
in the future has essentially no impact on today’s price and thus 400 years in the future is equivalent to
infinity for practical purposes in our simulations.
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and add these shocks to ŷt to produce yj
t ; j = 1, ..., J for the cross section of j economies

at time t. We then repeat this procedure through time for each of the J economies,

conditioning on yj
t , to form yj

t+i i = 1, ..., I. We therefore produce an out-of-sample panel of

values of y for J economies stretching out I periods, all of which have been simulated

based on the in-sample data.

Step C: Calculate the fundamental DK price based on this panel of simulated y using

Equation 6 as follows:

PDK
t = Dt

J∑

j=1

(
I∑

i=1

Πi
k=1y

j
t+k

)
/J. (10)

Note that the preceding equation can be rearranged by bringing the dividend level Dt

inside the parentheses so that

PDK
t =

J∑

j=1

(
Dt

I∑

i=1

Πi
k=1y

j
t+k

)
/J.

It is interesting to note here that the parenthesized term in the preceding equation – i.e.,

Dt
∑I

i=1 Πi
k=1y

j
t+k – is for economy j the ex post rational price of the stock from

Equation 2, with the terminal period pushed out to infinity as I goes to infinity. In other

words, if an investor stood at the end of time and looked back over history to see that the

stock had paid a stream of dividends that had grown at rate gj
t+i and which were

discounted at rate rj
t+i such that the discounted dividend growth rate had been yj

t+i in this

jth economy, the investor would rationally feel that she should have been willing to pay

PX,j
t ≡ Dt

∑I
i=1 Πi

k=1y
j
t+k to have purchased the stock back in time t, where PX,j

t is

commonly referred to by Shiller (1981) and others as the “ex post rational price” (although

when applied to data it is truncated at the end of the data period, as shown in Equation 2

above).
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The representation of a single fan of the DK simulation as an ex post rational price is

interesting because it highlights the relationship between the ex post rational price, the

Gordon price and the DK technique, and therefore provides some insight into the likely

properties of the price estimates produced by various methods. For example, it is clearly

seen that all Gordon-based methods are restricted versions of the DK technique. The basic

Gordon model, for example, imposes conditionally constant dividend growth rates and

discount rates such that each of the j economies in the simulation are identical and based

on a constant y. If these restrictions are invalid – and there is good reason to believe that

they are indeed invalid – then the Gordon estimator will be be biased and inefficient

relative to DK.

The ex post rational price calculations performed by Shiller (1981) and others are also

problematic because they estimate a fundamental price based only on one realization of

dividends and discount rates: the realization actually observed in the true market. In other

words, Shiller’s method stands at the end of time and asks what an investor with perfect

foresight would have paid back at date t for a share of stock, had she known the dividends

and discount rates that were to occur in the future.5 Conversely, a real-life investor looks

into an uncertain future when making purchasing decisions and therefore considers a

universe of possible economies that might unfold when valuing a share of stock – this is the

DK method. The ex post rational price, based on only one time-path, will therefore

provide an imprecise picture of the thousands of possible economies, and their associated

dividend time-paths, that were considered when forming the market price at which real-life

traders buy and sell stock. The extent to which this imprecision might affect our view on

important asset-pricing questions, such as whether market prices are excessively volatile or

not, is studied below.

5Of course, if the investor had perfect foresight, and therefore faced no uncertainty, she would not require
an equity risk premium so the discount rate she would use would be lower than the rate r used in the ex-post
price calculation. This subtlety is typically ignored in the literature that uses ex-post price calculations. For
consistency we will also follow the literature here.
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I.B. Some Tests Using Fundamental Prices

One of the key features of analytically-based fundamental pricing procedures is that the

fundamental prices they produce behave differently than observed market prices in

important ways. For example, the time path of such fundamental prices is typically much

smother than that of observed market prices, which has led many researchers to conclude

that market prices are excessively volatile. Indeed, there is an entire literature devoted to

the study of excess volatility in financial markets (reviewed by Camerer (1989) and

Cochrane (1992)). Conversely, Donaldson and Kamstra (1996, 2000) find that the DK

procedure produces fundamental stock prices that behave substantially the same as market

prices in terms of return volatility. Of course, the evidence presented in all of these papers

is based on the comparison of one estimate of the fundamental price (the estimate

produced by the model in question) with one realization of the market price (the price

series we see in the true market data). Given that the results come from only one price

series, there is no way to be truly sure how accurate (biased, precise, etc.) the

fundamentals estimate might be in general. The use of computer-aided financial

econometric techniques in an investigation of the accuracy of various

fundamentals-estimation procedures is therefore one important objective of this chapter.

Another objective of this chapter is to investigate the properties of various tests applied to

fundamental and actual stock price data, in particular tests for excess volatility and price

bubbles. Tests we investigate in this chapter include the following standard tests for price

bubbles. First, Camerer (1989) observes that market prices would boom upward and crash

downward with bubbles expanding and collapsing, which would lead market prices to be

excessively volatile relative to fundamental prices if the market price contained bubbles.

This suggests a test with a no-bubbles null hypothesis that the variance of the percentage

rate of change in market prices and the percentage rate of change in fundamental prices are

equal, and an alternative hypothesis that the market price contains bubbles and thus that
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the variance in the percentage rate of change in market prices is greater than the

percentage rate of change in fundamental prices.

Second, a direct test of bubbles asks whether the market and fundamental prices are

cointegrated (e.g., Campbell and Shiller (1987)). Bubbles in the market price will lead to a

non-stationary difference between the market price and the fundamental price estimate; a

standard unit root test on this difference therefore tests the null of cointegration. See

Dickey and Fuller (1981) and Said and Dickey (1984) for a description of unit root tests.

Third, Mankiw, Romer and Shapiro (1985) (MRS) develop two tests for bubbles. They

exploit a decomposition of the difference between the ex post rational price, PX
t (calculated

by inserting realized dividends and discount rates into the present value equation as in

Shiller (1981), as seen in Equation 2 above), and the fundamental price estimate P F
t ,

relative to the observed market price PM
t :

(
PX

t − P F
t

)
=

(
PX

t − PM
t

)
+

(
PM

t − P F
t

)
.

Since the total volatility of the two sides of the preceding equation are equal by definition,

the volatility of each individual component on the right hand side should be less than or

equal to the volatility of the left hand side. The test which compares the volatility of the

first term on the right hand side with the volatility of the left hand side will be labeled the

MRS1 test, while the test which compares the volatility of the second term on the right

hand side with the volatility of the left hand side will be labeled the MRS2 test. In both

cases the null hypothesis of no bubbles (i.e., no excess volatility) is that the term on the

left hand side is more volatile than the right hand side term to which it is being compared.

In considering these tests it is worth asking whether any of them have proper size, or

whether they over-reject as some researchers argue. Note that these tests involve a joint

null hypothesis that the market price does not contain a bubble and that the fundamental

price estimate, produce by some fundamental pricing model, shares similar properties with
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the market’s true unobserved fundamental price. A finding of systematic over-rejection

across simulated market economies (where the null of no bubbles is imposed) would

therefore indicate that the model used to produce fundamental price estimates is

misspecified.

In this chapter we employ Monte Carlo procedures to investigate the performance of

various fundamentals-estimation methodologies and of simulated market prices, and also of

various procedures commonly used to test for excess volatility and bubbles in stock prices.

Although our particular application of Monte Carlo methods is new, there is already a

significant literature that uses Monte Carlo methods in asset pricing applications. Indeed,

there is body of work that (directly or indirectly) simulates stock prices and dividends,

under various assumptions, to investigate price and dividend behavior (e.g., Scott (1985),

Kleidon (1986), West (1988a,b), Campbell (1991), Mankiw, Romer and Shapiro (1991),

Hodrick (1992), Timmermann (1993,1995), and Campbell and Shiller (1998)). However,

these studies typically impose restrictions on the dividend and discount rate processes so as

to obtain fundamental prices from some variant of the Gordon (1962) model discussed

above and/or some log-linear approximating framework.

Rather than impose approximations to solve Equation 4 analytically, we will instead

simulate the dividend growth and discount rate processes directly, and evaluate the

expectation through Monte Carlo integration techniques. This approach is computationally

burdensome since it requires us to perform a Monte Carlo simulation of a Monte Carlo

simulation, but it is the only way to evaluate Equation 4 without approximation error.6

We also take care to calibrate our models to the time series properties of the data.

Dividend growth, for instance, is strongly autocorrelated in the S&P500 stock market data,

in contrast to the assumption of a log random walk for dividends often imposed in this

literature.

6There is still Monte Carlo simulation error, but that is random, unlike most types of approximation
error, and it can also be measured explicitly. This simulation error is analogous to simple cases such as the
simulation error associated with Monte Carlo experiments on the size of a test statistic.
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II. Simulating Fundamental Stock Prices

Consider again the pricing relationship of Equation 4 above, rewritten below for

convenience, in which P is the price (for notational convenience we drop the superscript

“F”), D the dividend, g the dividend growth rate, and r the discount rate:

Pt = DtEt

{ ∞∑

i=1

(
Πi

k=1

[
1 + gt+k−1

1 + rt+k−1

])}
.

We now execute our strategy of (a) calibrating models to market dividends and interest

rates, (b) simulating bubble-free economies using these calibrated models, (c) calculating

fundamental prices for these bubble-free economies, (d) forming fundamental price

estimates, including the Gordon models and the DK model, and (e) evaluating these

fundamental price estimates and tests for bubbles.

II.A. Dividends and Discount Rates

The first step is to estimate time series models for dividend growth and interest rates so

that the Monte Carlo simulations generate dividends and discount rates that match

real-world dividends and discount rates. This will allow us to generate non-bubble prices

and returns and compare them to real world prices and returns (e.g, a finding that the real

world prices and returns look significantly different than the simulated (non-bubble) prices

and returns would provide evidence of non-fundamental movements in real world prices

and returns; possibly bubbles). This will also allow us to evaluate conventional

fundamental price estimation methods, including variants of the Gordon Growth model,

and conventional tests for bubbles, such as the MRS tests, to explore the properties of the

estimators and test statistics when there are no bubbles in the price.

Our dividend process is calibrated to the S&P 500 stock index annual dividend data,
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1952-1998, collected as described in Shiller (1989). The discount rate is defined to be the

risk free interest rate plus a constant equity premium, where the risk free rate is the

interest rate on a one-year U.S. T-bill as constructed by the U.S. Federal reserve,

1952-1998.7 A constant equity premium of 5.77% is added to the risk free interest rate to

produce a discount rate consistent with the stock price data.8

S&P 500 dividends grew at an average rate of 5.5% per year, over 1952-1998, with a

standard deviation of 3.7%. As dividend growth rates have a minimum value of -100% and

no theoretical maximum, a natural choice for their distribution is the log normal in the

S&P500 data. The logarithm of 1 plus the dividend growth rate has mean 0.0531 and

standard deviation 0.035 over 1952-1998. We estimated simple autoregressive moving

average (ARMA) time series models for the logarithm of 1 plus the dividend growth rate

and found the best model by the Bayesian Information Criterion to be a moving average

model of order 1 (MA(1)) with the MA(1) coefficient equal to 0.60. Standard tests for

normality of this error term do not reject the null of normality,9 and standard tests for

autocorrelation and autoregressive conditional heteroskedasticity (ARCH) fail to reject the

null of homoskedasticity and no serial correlation10.11

As for interest rates, since economic theory admits a wide range of possible interest rate

processes there are a variety of models possible, from constant to autoregressive and highly

non-linear heteroskedastic forms. The autoregressive model of order 1 (AR(1)) of the

logarithm of interest rates, as described in Hull (1993) p.408, will be used here as it fits our

data well and restricts nominal rates to be positive. Standard specification tests for

7We choose this measure because, as Cochrane (1992) notes, “there is a long tradition in the volatility
test and investment or capital-budgeting literature that measures time-varying discount rates from interest
rates plus risk premiums that are constant over time”.

8Finance theory requires that E {(1 + R)/(1 + i + π)} = 1, where R is the log of one plus the stock return,
i the riskfree rate and π the equity premium (i.e., 1/[1 + i + π] is the “pricing kernel”). See, for example,
Campbell, Lo and MacKinlay (1997). Selection of the equity premium that produces the requisite pricing
kernel was accomplished with a grid search, and this leads to a risk premium of 5.77% in the annual S&P
500 data over 1952-1998.

9These tests include the Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling
tests. See SAS Procedures Guide (1999).

10See Engle (1982) for the seminal treatment of ARCH effects.
11These are based on autocorrelations of the residuals and residuals squared.
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normality, autocorrelation and ARCH on the error term from an AR(1) model of the

logarithm of interest rates do not reject the null of no misspecification. The 1-year T-bill

rates have mean 0.059 and standard deviation 0.03 over 1952-1998. The AR(1) coefficient

estimate in the regression of log interest rates on lagged log interest rates equals 0.83.

Finally, the error terms from the MA(1) model of log dividend growth rates and log

interest rates are correlated, with a correlation coefficient of 0.21.

Properties of fundamental prices and returns produced by Equation 4 hinge delicately on

the modeling of the dynamics of the dividend growth and interest rate processes. For

instance, fundamental prices will equal a constant times the dividend level and

fundamental returns will be very smooth over time if dividend growth and interest rates

are equal to constants plus independent innovations. However, modeling these data series

to capture the serial dependence of dividend growth rates and interest rates observed in the

data, as we have done, will typically lead to time-varying price-dividend ratios and variable

returns of the sort we see in the S&P500 stock market data.

II.B. The Monte Carlo Experiment

We now detail the Monte Carlo experiment by which the price, P , is arrived at given

conditioning information on the dividend level, D, dividend growth rate, g, and interest

rate, r. That is, we detail for the eth economy (where e = 1, ..., E) the formation of the

price P e
t given De

t , ge
t , and re

t . P e
t is the market price that Equation 4 states would obtain

in economy e if the stock market in economy e is rational, efficient, and bubble-free.

In terms of timing and information, recall that P e
t is the stock’s beginning-of-period-t

market price based on fundamental factors, re
t is the rate used to discount payments

received during period t and is known at the beginning of period t, De
t is paid at the

beginning of period t, ge
t ≡ (De

t+1 −De
t )/D

e
t and is not known at the beginning of period t

since it depends on De
t+1, and Et {·} is the conditional expectation operator, with the
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conditioning information being the set of information available to investors at the

beginning of period t. Finally, recall from Equation 4 that investor rationality requires

P e
t = De

tEt

{ ∞∑

i=1

(
Πi

k=1

[
1 + ge

t+k−1

1 + re
t+k−1

])}
.

Based on the preceding equation, we generate prices by generating a multitude of possible

streams of dividends and discount rates, present-value discounting the dividends with the

interest rates, and averaging the results; i.e., by conducting a Monte Carlo integration.

Hence we produce P e
t , e = 1, ..., E utilizing only dividend growth rates and discount rates.

The exact procedure is described below and summarized in Exhibit 2.

———– Exhibit 2 goes here ———-

II.B.1. Simulating Stock Prices for a Rational, Efficient, Bubble-Free Market

Step 1: When forming P e
t , the most recent fundamental information available to a market

trader would be ge
t−1, De

t , and re
t . The quantities ge

t−1, De
t , and re

t must therefore be

generated directly in our Monte Carlo experiment, whereas P e
t must be calculated based on

these g, r and D since this is how prices would be determined by a rational market

participant in a bubble-free economy. In the steps below the risk free T-bill rate is

indicated as r and the discount rate (i.e., the risk free interest rate plus the risk premium

of 5.77%) as r∗. The objective of Steps 1(a)-(c) is to produce dividend growth rates and

interest rates that replicate the real world dividend growth and discount rate data. That is,

the simulated dividend growth rates and interest rates must have the same mean, variance,

correlation structure and autocorrelation structure as the real world dividend growth rates

and interest rates.

Step 1(a): Note that since the logarithm of one plus the dividend growth rate is modeled
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as a MA(1) process, log(1 + ge
t ) is a function of only innovations, labeled εe

g. Note also that

since the logarithm of the interest rate is modeled as an AR(1) process, log(re
t ) is a

function of log(re
t−1) and an innovation labeled εe

r. Set the initial dividend, De
1, equal to the

S&P500’s dividend value for 1951 (observed at the end of 1951), and the lagged innovation

of the logarithm of the dividend growth rates εe
g,0 to 0. To match the real-world interest

rate data, set log(re
0) = −3.05 (the mean value of log interest rates required to produce

interest rates matching the mean and variance of observed T-bill rates). Set the standard

deviation of the innovation to the log interest rate process to 0.242, and the standard

deviation of the innovation to the log dividend growth rate process to 0.0305. Then

generate two independent standard normal random numbers, εe
1,1 and εe

2,1, and form two

correlated random variables, εe
r,1 = 0.242(0.21εe

1,1 + (1− .212).5εe
2,1) and εe

g,1 = 0.0305εe
1,1.

These are the simulated innovations to the interest rate and dividend growth rate

processes, formed to have standard deviations of 0.242 and 0.0305 respectively to match

the data, and to be correlated with correlation coefficient 0.21 as we find in the S&P 500

and T-bill data. Next, form log(1 + ge
1) = 0.0531 + 0.60εe

g,0 + εe
g,1 and

log(re
1) = −0.18 + 0.94log(re

0) + εe
r,1.

12 Also form De
2 = De

1(1 + ge
1).

Step 1(b): Produce two correlated normal random variables, εe
r,2 and εe

g,2 as in Step 1(a)

above, and conditioning on εe
g,1 and log(re

1) from Step 1(a) produce

log(1 + ge
2) = 0.0531 + 0.60εe

g,1 + εe
g,2, log(re

2) = −0.18 + 0.94log(re
1) + εe

r,2 and

De
3 = De

2(1 + ge
2).

Step 1(c): Repeat Step 1(b) to form log(1 + ge
t ), log(re

t ) and De
t for t = 3, 4, 5, ..., T and

for each economy e = 1, 2, 3, ..., E. Then calculate the dividend growth rate ge
t and the

discount rate re
∗,t = re

t + 0.0577.

Step 2: For each time period t = 1, 2, 3, ..., T and economy e = 1, 2, 3, ..., E we must

12Notice that the AR(1) parameter for the log interest rate process is estimated to be 0.83 but we have
set it to 0.94 in the simulations. It is well known that the coefficient estimate in an AR(1) OLS regression
is biased downwards; see for instance Kennedy (1992) p.147. Monte Carlo experiments were employed to
determine the appropriate correction for our data, as in Orcutt and Winokur (1969), and this led to the
setting of 0.94. The intercept term had to be adjusted as well to reflect this new setting.
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calculate present value prices, P e
t . In order to do this we must solve for the expectation of

the infinite sum of discounted future dividends conditional on time t− 1 information for

economy e. That is, we must produce a cross-section of dividends and interest rates that

might be observed in periods t, t + 1, t + 2, ... given what is known at period t− 1 and use

these to solve the expectation of Equation 4. The counter j below indexes the cross-section

of future economies that could possibly evolve from the current state of the economy.

Step 2(a): Set εj,e
g,t−1 = εe

g,t−1 and log(rj,e
t−1) = log(re

t−1) for j = 1, 2, 3, ..., J . Generate two

independent standard normal random numbers, εj,e
1,t and εj,e

2,t and form two correlated

random variables εj,e
r,t = 0.242(0.21εj,e

1,t + (1− .212).5εj,e
2,t) and εj,e

g,t = 0.0305εj,e
1,t for

j = 1, 2, 3, ..., J .13 These are the simulated innovations to the interest rate and dividend

growth rate processes, respectively. Form log(1 + gj,e
t ) = 0.0531 + 0.60εj,e

g,t−1 + εj,e
g,t and

log(rj,e
t ) = −0.18 + 0.94log(rj,e

t−1) + εj,e
r,t .

Step 2(b): Produce two correlated normal random variables εj,e
r,t+1 and εj,e

g,t+1 as in Step

2(a) above, and conditioning on εj,e
g,t and log(rj,e

t ) from Step 2(a) produce

log(1 + gj,e
t+1) = 0.0531 + 0.60εj,e

g,t + εj,e
g,t+1, and log(rj,e

t+1) = −0.18 + 0.94log(rj,e
t ) + εj,e

r,t+1 for

j = 1, 2, 3, ..., J .

Step 2(c): Repeat Step 2(b) to form log(1 + gj,e
t+i) and log(rj,e

t+i) for i = 2, 3, 4, ..., I,

j = 1, 2, 3, ..., J , and economies e = 1, 2, 3, ..., E. Solve for the dividend growth rate gj,e
t+i,

the dividends Dj,e
t+i, and the discount rate rj,e

∗,t+i = rj,e
t+i + 0.0577 for i = 0, 1, 2, ..., I.

Step 2(d): The present discounted value of each of the individual J streams of dividends

is now taken in accordance with Equation 4. Note that for each of the j streams the

present value price so calculated for that stream is the ex post rational price for the jth

economy; the price a rational investor would pay for the stock if she knew for certain that

the jth economy would obtain. We can therefore call the jth present value PX,j,e
t , where the

superscript X denotes ex post rational.

13For our random number generation we made use of a variance reduction technique, stratified sampling.
This technique has us drawing pseudo-random numbers ensuring that q% of these draws come from the qth

percentile, so that our sampling does not weight any grouping of random draws too heavily.
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In considering these prices, note that according to Equation 4 the stream of discount and

dividend growth rates should be infinitely long, while in our simulations we extend the

stream only a finite number of periods, I. Since the ratio of gross dividend growth rates to

gross discount rates – i.e., the ys in Equation 6 – are less than one in steady state, the

individual product elements in the infinite sum in Equation 6 (equivalently Equation 4)

eventually converge to zero as I increases. Indeed, this convergence to zero is exactly what

is required for the absence of price bubbles! We therefore set I large enough in our

simulations so that the truncation does not materially effect our results. As mentioned

previously, we found that setting I = 400 (years) accomplishes this conservatively. That is,

the discounted value today of a dividend payment received 400 years in the future is

essentially zero. Also note that the steps above are required to produce P e
t , De

t , ge
t−1, and

re
∗,t for e = 1, ..., E; the intermediate terms superscripted with a j are required only to

perform the numerical integration that yields P e
t .

Step 2(e): Perform Steps 1(a)-(c) and 2(a)-(d) for t = 1, ...T , rolling out E independent

economies for T periods. The length of the time series T is chosen to be 47 to imitate the

47 years of annual data we have available from the S&P 500 from 1952-1998.14 This

produces De
t , re

t , and P e
t , for t = 1, 2, 3, ..., T and e = 1, 2, 3, ..., E. We can also construct

the market returns for these economies,

Re
t = (P e

t+1 + De
t+1 − P e

t )/P e
t

and the equity premium, πe, that agents in the eth economy would observe. The equity

premium satisfies the pricing-kernel condition:15

14To avoid initial conditions contaminating the simulations, the dividend growth rates and interest rates
are simulated for over a hundred periods before dividends and prices are calculated.

15As with determining the equity premium for the S&P 500 data, this requires a nonlinear estimation
problem to be solved and was accomplished with a grid search. The equity premium is restricted to be
positive and thus is set to 0 if πe < 0.

19



E

{
1 + Re

t

1 + re
t + πe

}
= 1.

Exhibit 3 summarizes this procedure by which we calculate market prices for the E

economies in Step 2(e).

———– Exhibit 3 goes here ———-

II.B.2. Calculating Fundamental Prices

Now that we have calculated market prices for each of the E economies, we next move to

calculate estimated fundamental prices for the same economies based on various

fundamentals-estimation procedures, such as the Gordon and DK models.

Step 3: It is useful for future reference to first calculate ex post rational prices for these E

economies; these are the prices that obtain by substituting realized interest rates and

dividends for their expected values in Equation 2. To do this, Define PX,e
t as the ex post

rational price for economy e at time t and treat P e
T as the truncation point price; i.e., the

last price observation in the sample.16 We will use the realized dividends De
t , interest rates

re
t and equity premium πe to perform the calculation for each economy e = 1, 2, 3, ..., E.

This calculation of ex post rational prices for each of the E economies and t = 1, ..., T time

periods produces E time series of ex post rational prices produced by our simulations.

Step 4: We must also form Gordon Model prices for each of these E economies. That is,

for each of the e = 1, 2, 3, ..., E simulated economies for which market prices were calculated

in the previous section, we now calculate a fundamental price using the Gordon model.

Step 4(a): Set ḡe =
∑T

t=1 ge
t /T and r̄e

∗ =
∑T

t=1 re
t /T + πe, and form the Gordon price

16In the literature (e.g., Shiller(1981)), when calculating ex post rational prices, a truncation point is
chosen to be either fixed, at say the last observed market price, or to be a moving point 20 or more years
ahead of the date for which we are calculating the price. With a fixed date, the ex post price converges to
the market price at the terminal date.
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PG,e
t = De

t

[
1 + ḡe

r̄e∗ − ḡe

]

.

Step 4(b): In addition to the classic Gordon model, there have been a variety of

extensions to make the Gordon model more realistic by allowing dividend growth rates to

vary over time. We implement the trinomial dividend models of Yao (1997): the additive

Markov model and the geometric Markov model specified in Equation 8 and Equation 9

above.

The additive model has us estimating for each e = 1, 2, 3, ..., E economy the average

absolute value of the change in the dividend payment, ∆e =
∑T

t=2 |De
t −De

t−1|/(T − 1), the

proportion of the time the dividend increases, qe,u, and the proportion of the time the

dividend decreases, qe,d, in order to form the price estimate

PADD,e
t = De

t−1/r̄
e
∗ +

[
1/r̄e

∗ + (1/r̄e
∗)

2
] (

qe,u − qe,d
)

∆e.

The geometric model has us estimating for each economy e = 1, 2, 3, ..., E the average

absolute value of the percentage change in the dividend payment,

∆e,% =
∑T

t=2 |(De
t −De

t−1)/D
e
t−1|/(T − 1), to form the price estimate

PGEO,e
t = De

t−1

[
1 + (qe,u − qe,d)∆e,%

r̄e∗ − (qe,u − qe,d)∆e,%

]

Step 5: Finally, we also consider the Donaldson and Kamstra (1996) procedure, which

focuses on the ratio of dividend growth to discount rates,

log(yt) ≡ log((1 + gt)/(1 + rt + π)), rather than on dividend growth and interest rates

separately. The DK procedure calls for evolving many possible streams of ys into the

future with a Monte Carlo simulation and then taking the present value as in Equation 10.

Donaldson and Kamstra (1996) argue that yt is better behaved than gt or discount rates
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alone and that it makes more sense to forecast yt since this is the object of investor interest

in Equation 6. In other words, investors care about the ratio of gross dividend growth to

the gross discount rate, not about each variable individually, so it makes more sense to

forecast the ratio y. The DK procedure is described below and summarized in Exhibit 4.

———– Exhibit 4 goes here ———-

Step 5(a): To implement the DK procedure, we start by estimating a model for log(y)

that captures its dynamic evolution over time. For each of the e = 1, 2, 3, ..., E simulated

economies for which market prices were calculated in the previous section, we now use the

Bayesian Information Criterion to select the “best” model from the set of ARMA(p,q)

models, (p,q)=(1,0), (1,1) and (2,0) for log(yt). We find that (p,q)=(1,0) is usually, but not

always, chosen. For each of the E economies we then use the estimated model to make

conditional mean forecasts ̂log(ye
t ), t = 1, ..., T , conditional on only data observed before

period t for that economy. We also estimate the sample standard deviation (σ̂e) of the

residual of the model within each economy. With E = 1000 economies we would do this

step 1,000 times, once for each of the e = 1, ..., E economies.

Step 5(b): Now simulate discounted dividend growth rates for each of the e = 1, 2, 3, ..., E

simulated economies. That is, produce log(ye) that might be observed in period t in

economy e given what is known at period t− 1 in economy e. To do this for a given period

t and economy e, simulate a population of J independent possible shocks (draws from a

normal distribution,17 mean 0 and standard deviation equal to σ̂e), which we label

εj,e
t , j = 1, ..., J , and add these shocks separately to the conditional mean forecast ̂log(ye

t )

from Step 5(a) so as to produce log(yj,e
t ) = ̂log(ye

t ) + εj,e
t , j = 1, ..., J . This is a simulated

cross-section of J possible realizations of log(ye
t ) considered at time t− 1 for economy e, i.e.

different paths that economy e may take next period. Note here that we are performing a

17The regression error from time series models of log(y), formed with the S&P 500 and T-bill data, are
normally distributed, leading us to this choice of distribution for the shocks here. Limited experiments with
the Monte Carlo log(y) series indicates the regression error invariably appears to be normally distributed.
As y is a ratio of log normal random variables, this is not surprising.

22



Monte Carlo simulation on each of the e economies that were themselves generated by a

Monte Carlo simulation, so that if we generate E = 1000 economies in Steps 1-2 above, and

J = 1000 economies in Step 5, we are in total generating 1, 000, 000 economies for the DK

simulation (which is precisely what we have done for the investigations in this chapter).

Step 5(c): Next, for each economy e, use the estimated model from Step 5(a) to make the

conditional mean forecast
̂

log(yj,e
t+1), conditional on only the jth realization for period t,

log(yj,e
t ) and εj,e

t , and the data known at period t− 1, and simulate a population of J

independent shocks εj,e
t+1, j = 1, ..., J as in Step 5(b) to form log(yj,e

t+1).

Step 5(d): Repeat Step 5(c) to form log(yj,e
t+2), log(yj,e

t+3), ..., log(yj,e
t+I) for each of the J

economies, where I is the number of periods into the future the simulation is run (I = 400

in our simulations, as explained above). Then form the simulated ex post rational price,

P s,j,e
t , where

P s,j,e
t = De

t

(
yj,e

t + yj,e
t yj,e

t+1 + yj,e
t yj,e

t+1y
j,e
t+2 + · · ·

)
; j = 1, ..., J,

corresponding to the J possible economies based on the previously simulated economy e.

Step 5(e): Calculate the DK fundamental price for each time period t = 1, ..., T and each

economy e = 1, 2, 3, ..., E:

PDK,e
t =

J∑

j=1

P s,j,e
t /J.

The DK procedure outlined above is represented diagrammatically in Exhibit 4 above. For

the experiments in this chapter we set E = 1000, J = 1000, and I = 400.18

18Less than 2% of the simulations (economies) yielded DK models that were not stable, or that produced
rollouts that were not stable, and were excluded from the analysis below. These economies were not remark-
able otherwise, and the majority of the experimental results we present are qualitatively unchanged whether
these simulations are included or not.
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II.B.3. Sensitivity of the Monte Carlo Results

Careful analysis of any Monte Carlo simulation must include a discussion of the simulation

error itself. In a world of unlimited resources, the simulation error can be driven down to

negligible scales by increasing the number of replications, in our case increasing the number

of simulated economies, E, from 1,000 to several million, and increasing the fans, J , used

in the calculation of each economy’s market price from 1,000 to several million. This

chapter’s Monte Carlo experiment involves a simulation of a numerical integration (to

calculate market prices) as well as the method of Donaldson and Kamstra (1996) which is

also a numerical integration (to calculate the DK prices). The scale of the simulation

quickly reaches frightening proportions as we increase the number of replications

(economies), E, or fans, J , in the numerical integrations. The choice of 1,000 economies,

each stretching out for 47 years, and then the choice of 1,000 fans used to calculate the

market prices for each year of each economy, led to roughly one month of CPU time on an

SUN UltraSparc II 400 Mhz machine, the practical limit for this experiment given

competing demands for this resource.

To determine the simulation error, we must conduct a simulation of the simulations. Unlike

some Monte Carlo experiments (such as those estimating the size of a test statistic under

the null) the standard error of the simulation error for most of our estimates (returns,

prices, etc.) are themselves analytically intractable, and must be simulated. In order to

estimate the standard error of the simulation error in estimating market prices, we

estimated a single market price 1,000 times, each time independent of the other, and from

this set of prices computed the mean and variance of the price estimate. If the experiment

had no simulation error, each of the thousand price estimates would be identical. With the

number of fans, J , equal to 1,000 we find that the standard deviation of the simulation

error is only 0.28 % of the price, which is sufficiently small as to not be a source of concern

for our study.19

19We further investigated the sensitivity of selected results by increasing the number of simulated
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III. The Results of the Monte Carlo Experiments

We now explore results based on our simulated market economies and the fundamental

prices calculated from them. The first set of results focus on summary statistics for

returns, dividend-price (D/P) ratios, dividend growth rates, interest rates and risk premia

produced by our simulated economies as compared to data from real-life financial markets.

The second set of results focuses on tests of bubbles in the simulated economies, as well as

on some related statistics.

Recall that no experiment presented here is calibrated to actual S&P 500 prices. All

experiments are calibrated only to dividend growth rates and discount rates, and then

prices are calculated based on the underlying fundamental factors. Great care was taken to

ensure that our experiments faithfully replicated the mean, variance, cross-correlation and

autoregressive structure of log dividend growth rates and log discount rates. If S&P 500

prices contain bubbles, we would expect that S&P 500 returns and price/dividend ratios

would be excessively volatile relative to our simulated economies, which do not themselves

contain bubbles. Furthermore, since we have no bubbles in our simulated economies, the

properties of the fundamental price estimates and the ex post rational price under the null

of no bubbles can be obtained from our simulations. This allows us to investigate the size

properties of tests for bubbles based on these bubble-free price estimates.

——— Table 1 Goes here ——–

Recall from the discussion above that we have 47 years of data from the S&P 500 and that

each of our 1000 simulated economies therefore also produce 47 years of data. For each of

the 1001 economies under investigation (1 actual economy and 1000 simulated economies)

we calculate the mean, standard deviation, skewness and kurtosis of a variety of interesting

economies, E, or the number of fans, J , to as large as 10,000 (restricting to two years the number of
periods each economy was followed out), but found no qualitative changes to our experimental results. Of
course, this did reduce the simulation error by a factor of square root 10, but was not of much practical gain
since the simulation error was already extremely small.
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variables, including dividend growth rates, interest rates, stock returns and dividend-price

ratios. For example, we calculate the mean return of the 47 years of the actual S&P 500

which appears in the top left cell of the results shown in Table 1. We also calculate the

mean return for each of our 1000 simulated economies, which produces 1000 mean return

estimates, the distribution of which is summarized in the remaining cells of the first row of

results shown in Table 1 (the X th percentile reports the return for the economy with the

X th largest return).

We begin our analysis of the results in Table 1 by considering results for dividend growth

rates and discount rates. Given that we calibrated the discount rates and dividend growth

rates to the true data, we would expect that discount and dividend growth rates from our

simulated economies would appear quite similar to the true market data. And indeed, we

see means, standard deviations, skewness and kurtosis for our simulated interest rates and

dividend growth rates very nearly identical to the true interest rate and dividend growth

rate data.20 Furthermore, each and every statistic for dividend growth rates and interest

rates lies near the center of the distribution of the simulated series. Given that we

generated dividend growth rates and interest rates to match the true data this is not

surprising and is only presented as a verification check. The true challenge, which may

provide some insight into the existence of bubbles in the S&P 500 data, is to see if S&P

500 returns and prices also look like returns and prices from economies that share dividend

and interest rate characteristics with the true economy, but have been simulated to have no

bubbles.

From the first row of Table 1 we see that, on average, our simulated economies produce

mean returns very close to returns from the actual S&P 500. Indeed, the S&P 500’s return

lies near the middle of the distribution of returns from our simulations. The skew and

kurtosis of S&P 500 returns also fall well within the 90% confidence interval formed by the

simulated economies. Only the standard deviation of market returns is (barely) outside the

20For instance, the S&P 500 dividend growth rates have a slight positive skew of 0.257, while the 5 and
95 percentiles of the simulated series of dividend growth rates are -.45 and 0.66 respectively.
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90% confidence interval formed by our simulated economies. Price levels themselves can of

course not be compared directly since price is a random walk and thus the unconditional

mean, standard deviation, skewness and kurtosis do not even exist. Financial studies

therefore typically focus on the dividend-price ratio, since prices and dividends are

cointegrated. From Table 1 we see is that the D/P ratio of the S&P 500 is similar to our

simulated data, with all statistics measured for the S&P 500 data within 90% confidence

interval formed by the simulated economies’ statistics (with the sole exception of the mean

D/P ratio which is outside the 90% confidence interval but within the 98% confidence

interval. the 5 percentile range). Again, similar to returns, the S&P 500 D/P ratios do not

stand out as wildly unusual, given the behavior of returns we see in no-bubble economies.

In sum, the results for dividend growth rates, interest rates, returns and D/P ratios shown

in Table 1 suggest that the behavior of the true S&P 500 stock index over the past 50 years

is not out of line with how we might expect a financial market to behave if that market

priced stocks in a rational, efficient and bubble-free manner, given interest rate and

dividend fundamentals. What other studies have argued to be anomalies in price behavior,

such as volatile return series, seem in our study to be entirely consistent with prices based

on dividend and interest rate fundamentals. The key difference between our investigation

and previous work is our calibration to the dividend and interest rate characteristics of the

economy with no simplifying assumptions when simulating market prices, returns and

various statistics and their distributions derived from these prices and returns. Conversely,

previous studies, even those that have used simulation techniques, can only make

(educated) guesses at what the empirical distribution of various tests and statistics might

be without the simplifying assumptions imposed. To the extent that these guesses and

simplifying assumptions (e.g., independent dividend innovations) are inaccurate, or to the

extent that small sample properties of the financial time series are not accounted for,

misleading results can be obtained and “anomalies” can be found where none truly exist.

Thus the approach we adopt leads to a conclusion opposite to many studies in the
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literature, starting with Shiller (1981), which conclude that stock prices are excessively

volatile relative to fundamentals.

———— Figure 1 goes here ————

To further investigate the summary statistics reported in Table 1, we provide a series of

figures which show the bivariate distributions of the economy-by-economy statistics that

went comprise Table 1. The S&P 500 economy could conceivably be relatively usual

compared to the simulated economies, statistic by statistic, but have a very unusual

combination (pairing) of statistics, which would become obvious from a bivariate plot of

these statistics for all the economies (e.g., the standard deviation of returns and the mean

of returns for the S&P 500 might each appear similar to simulated data, but the

mean-standard deviation combination seen in the S&P 500 data might be very different

than the mean-standard deviation combinations produced by the simulations). The plots

in Figures 1 through 5 display data points for each of our simulated economies and for the

S&P 500, with the actual S&P 500 data represented by a large black dot and the simulated

data by smaller circled points (which can, on occasion, appear in the plots to be small

black dots because of several circles partially overlaying each other).21

Figure 1 presents standard deviations versus means in a group of four panels for returns

(Panel A), D/P ratios (Panel B), dividend growth rates (Panel C) and interest rates (Panel

D). We would expect the dividend growth rate and interest rate plots to have the actual

S&P 500 data in the center of the cloud of points associated with the simulated economies

since we calibrated the experiments to these two quantities, and this is indeed what we

observe in Figure 1, Panels C and D. As for returns in Panel A, we see that economies

generated by calibrating to only discount rates and dividend growth rates produce

mean/variance pairs for returns that do not look terribly dissimilar to the S&P 500 return

data. The plot of the D/P ratios means versus standard deviations in Panel B also shows

21For presentation, data points which completely or very close to completely overlay each other were
condensed down to a single point.
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that the first two moments of the S&P 500 data are not entirely out of the bounds of

possibility, although the S&P 500 data do stray to the very edge of the joint distribution of

means and standard deviations for the D/P ratios from the simulated economies. In other

words, prices in the S&P500 data seem higher relative to dividends than we typically see in

our simulated economies. This suggests that, while the S&P500’s D/P ratio is not low

enough to claim with any degree of confidence that current market prices contain a bubble

of irrational exuberance, our evidence does suggest that actual market prices do seem

rather high relative to what we observe in our simulated economies. In other words,

S&P500 stock prices may indeed be suspiciously high as some people suggest, but they are

not so high as to allow us to conclude that they are not being driven by fundamentals.

———— Figure 2 goes here ————

Turning our attention back to Table 1, in the last row of Table 1 we present equity premia

from the true data and equity premia from our simulated economies. Note that since we

have only one equity premium value per economy we cannot present a standard deviation,

skew or kurtosis measure for the S&P 500 data; there is only the one equity premium

estimate of 5.77%. Similarly, in each of the simulated economies we have a single measure

of the equity premium and thus cannot present a standard deviation, skew or kurtosis

measure for the simulated equity premia either. However, we do see from Table 1 that the

risk premia possible in a simulated economy, with dividend and interest rate processes set

to mimic actual dividend and interest rate processes, can range from 0 to over 8%, even if

the true equity premium is below 6%. This suggests that the equity premium we see in the

actual S&P 500 data could be an imprecise estimate of the market’s true underlying risk

premium and leads us to wonder whether findings of so-called anomalies, such as the

Mehra and Prescott (1985) “equity premium puzzle”, are really puzzling, or whether such

findings are simply small sample flukes.22

22For an initial identification of the equity premium puzzle see Mehra and Prescott (1985). This seminal
work spawned a significant body of research on the equity premium puzzle, much of which is reviewed in
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To further examine the equity premium issue, we plot in Figure 2 the relationship between

stock returns and the equity premium. Recall that the actual S&P 500 data are

represented by a large black dot and the simulated data by smaller circled points.

Although the high equity premium of the last half-century has been much discussed, and

argued to be excessive, we see that the distribution of possible equity premia and mean

market returns over a 47 year period is quite spread out and that the S&P 500’s experience

is not terribly unusual, at least if you allow discount rates and dividend growth rates to be

autocorrelated random variables as we do. In fact, in a bubble-free economy with

fundamentals (i.e. dividend growth rates and discount rates) calibrated to match the true

economy, it is possible to observe measured equity premia very nearly equal to mean

returns, even when we would expect that over hundreds of years the mean return would

converge to 11% (the mean return of the S&P 500 over the past 47 years) and the mean

equity premium to 6% (the equity premium of the S&P 500 over the past 47 years). The

variance of the S&P 500 discount rates and market returns is so large that there is very

little we can draw from the so-called equity premium puzzle in the short time periods

available to us in the true economy.

———— Figure 3 goes here ————

Some authors have argued that the equity premium is “too large” not because stock

returns are too high, as originally argued, but rather because riskfree interest rates are too

low.23 Figure 3 therefore presents mean interest rates versus the equity premia. Again we

find the experience of the true data over the last 47 years to be unremarkable relative to

our simulated economies. It is not uncommon to find in our simulations very low mean

interest rates and high risk premia. In fact, low average interest rates are virtually a

prerequisite to finding high equity premia, as the sum of the two is restricted to add up

(approximately) to the mean return, and the mean return rarely strays above 14% over a

Campbell, Lo and MacKinlay (1997).
23For an excellent review, see Kocherlakota (1996).
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47 year period, according to our simulations.

———— Figure 4 goes here ————

For completeness, in Figure 4 we present mean returns versus interest rates. This

combination shows the actual S&P 500 data to have a relatively high return relative to the

interest rate, but even in this case the S&P 500 data is within the envelope of the

simulated economies.

For all the data and statistics we explore, including results on returns, D/P ratios, equity

premia, etc., the S&P 500 data does not seem to be wildly unusual among economies we

have generated. These economies have been generated to be bubble-free and calibrated to

the S&P 500 dividend and discount rate experience. Taken together this evidence therefore

suggests that the S&P 500 index does not contain price bubbles. Given this evidence that

the stock market does not contain bubbles, why is the financial econometric literature

replete with tests for bubbles that in general support the argument that stock prices are

excessively volatile? It is to this question that we now turn.

——— Table 2 Goes here ——–

Table 2 presents the results of four common statistical tests for stock price bubbles,

presented in rows one through four of the table, with the columns indicating the pricing

method (the the ex post rational price and four different fundamental price estimates) the

test was based on. Each test for bubbles was applied at the 10% significance level for each

pricing method (where applicable). In Table 2 we present the actual rejection rates across

our simulated economies for each of these tests and for each of the fundamental price

estimation techniques. If each test is well-behaved – i.e., has proper size – and if these

fundamentals estimation techniques are reliable guides to the true fundamental value, then

we would expect approximately 10% rejection rates in each entry for the first four rows of

the table, as all these tests are being applied under the null of no bubbles.24

24The rejection rate we calculate with these simulations is a random variable, centered on 10% with
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From the first four rows of Table 2 we see that the most commonly applied tests for

bubbles, the Camerer test and the two MRS tests, are extremely unreliable. If the tests

have correct size, the p-value entries in Table 2 would all be 0.10. However, in all but one

case the empirical p-values far exceed their theoretical values, which implies that these

tests typically grossly over-reject. In other words, common tests for stock price bubbles

find bubbles where none actually exist. Indeed, the Camerer test finds bubbles 100% of the

time using ex post and Gordon fundamental price series and 59% of the time using the DK

fundamental price series, even though the market price series does not contain bubbles.

Only the Campbell-Shiller test procedure (the Dicky-Fuller unit root test) comes close to

having correct size.

The last two rows of Table 2 report results on the fundamental pricing error, defined as the

fundamental price minus the simulated market price, all divided by the simulated market

price. Of all the fundamentals estimation techniques, the DK procedure is the most reliable

forecaster of market prices, with the smallest forecast error variance and among the

smallest mean errors. The superiority of the DK procedure over other simpler methods is

not very great, however. All the fundamental price estimation methods we employ suffer

from the same basic problem, which is the difficulty of estimating key parameters (the

mean dividend growth rate and discount rate in the case of the basic Gordon growth

method, the parameters of the ARMA process for discounted dividend growth rates in the

case of the DK method, etc.). Clearly, based on the results of Table 2, there is scope for

improvement in fundamentals estimation techniques.

———— Figure 5 goes here ————

Finally, we explore derived statistics from our experiments, including statistics such as the

sample autocorrelation at one lag in market stock returns and the ARCH effect in stock

returns. The fashion in which our data are constructed should lead to returns that are

a standard deviation derived from the binomial distribution, equal to the square root of 0.10 times 0.90
divided by the number of simulated economies, or 0.0095 approximately. Thus we would expect the rejection
rates to differ from 10% by no more that approximately 0.02 at the 5% level of significance.
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independent and identically distributed, but the distribution of the sample autocorrelation

at one lag and the ARCH(1) coefficient estimate may not be well approximated with the

usual asymptotic distributions. Figure 5 presents the universe of pairs of AR(1)-ARCH(1)

coefficient estimates from our simulated economies’ time series of returns and also plots the

coefficient estimates from the S&P 500 returns data. From Figure 5 we see that, once

again, the S&P 500 data do not appear wildly at odds with the cloud of data points from

our simulated economies. Furthermore, we see from our simulated economies that by

random chance we can find economies that exhibit extremely strong annual ARCH effects,

with the ARCH(1) coefficient achieving values ranging from -0.4 to 0.6, and equally strong

autoregressive effects, with positive and negative magnitudes of roughly 0.50 on the AR(1)

coefficient, even though neither of these effects are actually present in the data.

IV. Conclusions

The purpose of this chapter has been to use advanced simulation and Monte Carlo

techniques to learn more about the behavior of fundamental stock prices and the properties

of statistical tests commonly used to test for price bubbles in stock market data. We

produce simulated stock price series based on dividend growth and discount rate

fundamentals so as to simulate rational, efficient and bubble-free economies which share

dividend and interest rate characteristics with the true economy. While much conventional

wisdom suggests that stock prices are “too volatile” and may be influenced by the

“irrational exuberance” of traders, our evidence does not support this conclusion. On the

contrary, we find that actual stock prices do not behave significantly differently than our

simulated prices from rational, efficient and bubble-free economies. We also find that

traditional tests for excess volatility and bubbles over-reject the null of no bubbles in

samples of the size traditionally employed in the literature. Indeed, most tests we

investigate find overwhelming evidence of price bubbles even though we have constructed

the data to have no bubbles. In other words, we demonstrate that traditional tests for
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bubbles frequently find bubbles in data that do not in fact contain bubbles.

The key difference between our investigation and previous work is our calibration to the

dividend and interest rate characteristics of the economy with no simplifying assumptions

when simulating market prices, returns and various statistics and their distributions

derived from these prices and returns. Conversely, previous studies, even those that have

used simulation techniques, can only make (educated) guesses at what the empirical

distribution of various tests and statistics might be without the simplifying assumptions

imposed. To the extent that these guesses and simplifying assumptions (e.g., independent

dividend innovations) are inaccurate, or to the extent that small sample properties of the

financial time series are not accounted for, misleading results can be obtained and

“anomalies” can be found where none truly exist. While more work remains to be done in

this area, we believe that the results of this chapter at least raise some concerns with some

previously employed approaches and suggest an avenue for further investigation.
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Table 1

Statistics on the S&P 500 Index,

and Simulated Market Index

Data → S&P 500 Mean of Percentiles of
Simulated Simulated Data
Data 1% 5% 95% 99%

Statistic ↓
Returns Mean 0.11571 0.10065 0.07300 0.07984 0.12517 0.14214

Std.Dev. 0.13539 0.09137 0.05361 0.06057 0.13068 0.14969
Skewness -0.39741 0.13638 -0.66906 -0.48990 0.71935 1.29074
Kurtosis 2.75816 3.02994 1.87952 2.09439 4.49553 6.92236

D/P Mean 0.03629 0.04872 0.03321 0.03654 0.06724 0.08030
Ratios Std.Dev. 0.00946 0.00955 0.00266 0.00364 0.02062 0.02653

Skewness 0.44283 0.71078 -0.31723 -0.00336 1.64431 2.11081
Kurtosis 2.68087 3.12383 1.51714 1.81999 5.77567 8.06559

Dividend Mean 0.05513 0.05517 0.03731 0.04262 0.06746 0.07141
Growth Std.Dev. 0.03649 0.03680 0.02651 0.02918 0.04435 0.04828
Rates Skewness 0.25694 0.09863 -0.71792 -0.45213 0.66111 1.03167

Kurtosis 3.29200 2.73179 1.82880 2.00100 3.82972 4.51803
Interest Mean 0.05887 0.06008 0.01588 0.02391 0.11970 0.16291
Rates Std.Dev. 0.02981 0.02984 0.00626 0.00949 0.06851 0.08978

Skewness 0.95245 0.86858 -0.16511 0.12500 1.82812 2.30454
Kurtosis 3.69054 3.42080 1.55605 1.85578 6.74406 8.93784

Risk Premia Mean 0.05774 0.05102 0.00000 0.01141 0.07599 0.08382
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Table 2

Statistics and P-Values from Time-Series Tests

for Bubbles, Fads and Excess Volatility

Fundamental Forecasting
Model → Ex Post Gordon Gordon Gordon DK

Growth Additive Geometric
Statistic or P-Value ↓
Camerer test∗ 1.00000 1.00000 1.00000 1.00000 0.59021
MRS1 test∗ . 0.28746 0.05505 0.24873 0.21305
MRS2 test∗ . 0.31091 0.32314 0.35474 0.27013
Campbell-Shiller test 0.31600 0.10296 0.02446 0.13354 0.21101
Mean % Error† 0.07682 0.08475 0.17549 0.00187 -0.06629
% Error σ 0.17728 0.17842 0.34676 0.17842 0.15557

∗: P-values are from a paired-sample t-test, applied as follows. Let x1,t and x2,t be the two

series we are interested in testing for difference in variance, let x̄1 and x̄2 be the sample

means of x1,t and x2,t respectively, and define zt ≡ (x1,t − x̄1)
2 − (x2,t − x̄2)

2, i.e., the

difference in two paired samples. Then, under standard regularity conditions, a test of the

null hypothesis that the first moment of zt is greater than 0 can be interpreted as a test of

x1,t having greater variance than x2,t and implemented as a standard paired-sample t-test

for the mean of zt being greater than 0. The test statistic has an asymptotic normal

distribution under fairly weak conditions, permitting non-normality as well as some

dependence and heterogeneity (see Lehmann (1975) and Gastwirth and Rubin (1971)).

†: Percentage error calculated as price forecast minus market price all divided by price

forecast.
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Exhibit 1

Diagram of DK Monte Carlo Integration
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Exhibit 2 Diagram of a Simple Market Price
Calculation for the tth Observation
of the eth Economy (Steps 1 and 2)
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Exhibit 3

Diagram of the eth Economy of E
Economies and Calculation
of the eth Economy Market Price
at Time t + k (Step 2(e))
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Exhibit 4

Diagram of DK Monte Carlo Integration for the eth Economy
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Figure 1: Mean versus Standard Deviation

45



Figure 2: Return Mean versus Risk Premium
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Figure 3: Interest Rate Mean versus Risk Premium
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Figure 4: Return Mean versus Interest Rate Mean
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Figure 5: Return AR(1) Coefficient versus ARCH(1) Coefficient
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