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Evolving Artificial Neural Networks
to Combine Financial Forecasts

Paul G. Harrald and Mark Kamstra

Abstract—We conduct evolutionary programming experiments updating techniques to formally allow the weights on forecasts
to evolve artificial neural networks for forecast combination. to evolve with new information [19], [37], [20].

Using stock price volatility forecast data we find evolved networks Only linear combinations of the individual forecasts have

compare favorably with a naive average combination, a least . L . .
squares method, and a Kernel method on out-of-sample forecast- thus far been considered. This is a substantial, most likely

ing ability—the best evolved network showed strong superiority INappropriate, restriction and one with serious implications
in statistical tests of encompassing. Further, we find that the result for the efficiency or even the consistency of the combined

is not sensitive to the nature of the randomness inherent in the forecast. For example, consider the case of a dependent
evolutionary optimization process. variable y = z1 - 22 + ¢, where ¢ is an innovation and
Index Terms—Evolutionary programming, financial forecast- xz; and zs are known explanatory variables. If forecaster 1
ing, forecast comt_)ination, neural networks, self-adaptive evolu- has the modelf, = oz, and forecaster 2 has the model
tionary programming. fo = asxo, then any linear combination of the two forecasts
will be inferior to the nonlinear forecast(f; - f2), with
|. INTRODUCTION B = (1/(a1 - a2)). There exists some empirical evidence

OLICY and decision makers must tvoically adont a Of_or the gains from incorporating nonlinear combination of
sition based on a host of conflictin y% ini)c/)ns aFl);)outFi forecasts, specifically in the context of combining financial
g op hf%recasts of stock market volatility [7]. Such complications

future course of events. Processing multiple and confllctl%\th nonlinearity are becoming more widely appreciated in

data is an inherently complex and in many cases subjective | . : : . 4 .
. modeling economic data in particular, as evidenced in recent
procedure. We focus here on this process of consensus-makin . .
. ) . o work [32] and the wealth of new tests for nonlinearity [4],
when the information available to the decision maker
0], [33], [49], [50].

quantitative. For instance, the governor of a central bank m y[ArtificiaI neural networks (ANN's) have the ability to
have several forecasts of exchange rate movements available = o :
proximate arbitrarily well a large class of functions [23],

that need to be considered in setting the prime interest r 1-127], [32], [46], [52]-[54]. ANN's, therefore, have at

These forecasts may come from forecasters of differing abili . . . i
. o ) . least the potential to capture complex nonlinear relationships
and reputation and from forecasters with different informatiof S .
tween a group of individual forecasts and the variable

at hand. Forming some sort of consensus of the exchange Ate . . .
. . . ibelng forecasted, which simple linear models are unable to
movement forecasts is required before the prime rate can

e .
set. A simple average of the forecasts could be taken, %L?tpture. Readers should be aware that ANN modeling has
this ignores the ability and reputation of the forecasters, sinr%‘

een criticized as a “black box” (e.g., [11]). If care is not
equal weight would be given to each forecast. It is this bask en, all intuition for the relationship between the forecasts

i . . . and what is being forecast may be lost. It is also important
observation that has led to what is now a voluminous I|teratU{g recognize that the very act of combining forecasts is

on forecastcombining > .
. A . an admission of some sort of failure of the models from
The “optimal” weighting scheme of [1] is based on the . .
i oS ; ._which the forecasts are produced. If we are given all the
covariances of the individual forecasts with the actual realize : ; . L )
ormation used in generating the individual forecasts being

values of the variable being forecasted. Subsequent work t?’mbined, it is always better to construct a single “super

extended this notion of using past forecasts to form a superiar_,~, . : .
S . . model” that encompasses this full information set and not
combination. Examples from this body of work include the use " S .
combine the individual forecasts at all. What we are attempting

of unconstrained least squares regression of the actual Valyeaemonstrate here is the utility of the ANN model if we are

on the forecasts to form optimal weights, the correction Q . .
: o aced with only forecasts to combine.
serial correlation in the forecast errors, and the use of Bayesian

1in an unrelated literature [55], it is noted that competing nonlinear
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A typical training method for the ANN modeling is someB. Kernel Estimation
manner of supervised learning on a training sample, of whichy ene| estimation is a nonparametric smoothing technique

the familiar backpropagation is an example. It is almogigely used in modeling of economic and other data; see [22].
certain, however, that in many optimization problems fofpe technique essentially forms multidimensional histograms
which ANN's are considered to be appropriate architeCturgs the data to discover associations between the dependent
for search over mappings, the state space will exhibit magyq the independent variables. The nature of these associations
local optima [32], [2], rendering gradient-descent methods, pe aimost arbitrarily nonlinear, but uncovering these asso-
such as backpropagation unreliable. , _ciations has one very troublesome technicality—determining
In response to this problem of local optima, techniqugfe width of the histogram bars, called théndow-width

of evolutionary optimization such as genetic algorithms anghe chojce of window-width can be data driven. One popular
evolutionary programming (EP) have been applied t0 the,a_qriven method is cross validation, in which the window-
training of ANN's (e.g., [31], [36], [38], [41]). width is chosen by minimizing or maximizing some objective

. This paper describes the ANN me.thod of forecast COmbinﬁmction on the cross-validated data over a grid of possible
tion of [7] and reports on EP experiments to evolve suitab|gi,qow-widths2

parameterizations of a given ANN architecture. In Section Il A gacond technicality, but less troublesome as a matter of

we present combining methods. In Sections Ill, IV, and V e » tice, is the choice of the form of the histogram itself.
evolutionary programming approach to estimation of the AN imple on—off bars is one option, although a more popular

model is presented in detail. Section VI is a discussion of thejice has a probability distribution (such as the normal
data to be used to illustrate these techniques in an applicatia@tribution) centered on the middle of the bar.
In Section VII formal comparisons of the different techniques

of forecast combining are presented. Section VIII offers

. ; . o : ><? Artificial Neural Network Combining
discussion of the results with some intuition. Section |
concludes. The mechanics of ANN modeling are now fairly well

understood (e.g., [32]), and a review of ANN’s in general
is not undertaken here: we restrict attention to the application
of ANN'’s to forecast combination.

Consider the task of combining two forecasts. Lgt

First we present some traditional combining methods {Q.note the forecast from modsl for time ¢. Let d and
be used in comparison with our ANN method, second &g genote, respectively, the in-sample mean and in-sample
alternative method which is nonparametric, namely the Kerr@tmdard deviation of the variable being forecasted out-of-
method, and third, our ANN combining technique. sample. We consider ANN models of the form in (2)—(4),
from [7]

Il. COMBINING METHODS

A. Traditional Combining Methods

zip=(fie—d)/Sa ; j€{1,2} )
There are now many commonly employed methods for ’ ’ ) -1
combining forecasts [6], [20]. The assumption that the con-, _

e . . . . . Sty Vi =11 - 7 ,p,T AT 3
ditional expectation of the variable being forecasted is a linear (#,%i.p) +orp Yip0 F 12::1 TipFrt @)
combination of the available forecasts is consistent across all 9 3
combining methods. Thus when combining two individual Foo=00+> Bifie+ > 6U(z,

: . : »= > Bifie+ D 6%z %ip) (4)
forecasts fi » and f,., a single combined forecask; is P o P

produced according to (1) by appropriate choice of weights
Bo, 1, and B where p is an index whose use will be described below,

Yi p> 35, @and §; are parameters to be estimated in a manner
described below;y; , is a vector of they; ,, parameters,
Fy=Po+Bifir+ Pafar @) and F,, is the forecast of the dependent variable produced
by the ANN method. From (3) we see that the input layer
The cross-sectional average of the individual forecasts (d&scepts as activation the forecasts to be combined. The input
noted “Average”), perhaps the most widely used combinimpdes are linked to a hidden layer of three nodes, and also
method, setgl, = 0 and 8, = 2 = 0.5. directly to an output node, as is a bias. The hidden nodes
It can be shown that a multivariate ordinary least squaresd output node use a nonlinear sigmoidal filterwhich
(OLS) regression of the variable being forecasted on the,_ . o ) i
individual forecasts in-samble can be used to obtain “optimal” To implement cross validation, th_e Kernel \_Nelghts are estimated on a
Individua ) p - p aAubset of the data, and then the estimated weights are used to forecast the
forecast weightsf3y, 31, and 32 for use in out-of-sample remaining portion of the data. The “out-of-sample” forecasts are then collected

Combining [19]_ This combination will in general be moretnd the process repeated, leaving out a different subset of the data each time,
| “out-of-sample” forecasts for the entire data set are produced. (A cross-

. . ., ung
efficient than the simple average. We have also Con5|de'§%ddation estimation which has 1/N of the data omitted at a time is called an
Bayesian combination methods, but these have been foundiild cross-validation.) The model specification that produces cross-validated
have little advantage over classical methods at the forecastLjﬁcaSts with, say, the lowest mean squared error, is then selected as “best”
. . . . . 241, [29], [48]. Further studies include the derivation of optimality results
horizon we Investigate in this paper [37] and are not pursugfly pseudo-likelihood function [40] and many empirical studies (e.g., [47]
further here as a point of comparison. and [9]).

J=1 =1
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maps into (0,1). The standardization of forecasts from each Uz, v2,p) = (1 +exp(—=(v2,p,0 + Y2,p,121,¢

model is given in (2). This standardization is employed, +72p222t)))—1

together with the appropriate choice of the, ., to ensure v _q 3 e

that the ¥ function in (3) typically maps into the region (#,78,p) = (1 + exp(=(¥3p.0 + V3 p.17,1

close to 1/2 and not typically close to zero or one. Equation + ’73,p,2z2,t)))_1-

(4) makes explicit the manner in which the outputs from 1.3) For each pareni € {1,2,--,n}

the ¥ functions are to be used to form the final com- 1.3.1) ESUMateds . Bops B 610 820, 83y b

bined forecast. As the estimation of (4) will be based on " Lps 72,p> 173, "L £2,0 73.p y
OLS, population regressiali[¢7| = F} ;.

evolutionary programming and “self-adaptive” evolutionary )
programming, we will refer to these models generically as the 1.4) Sort the arrayy, over p by ascending MSE

i 2
EP-NN method and the SEP-NN method, respectively. The from regression of; on a constantfy;, /2.,
EP-NN method is described in Section IV and SEP-NN in Uz mp)s Uz, v2,p), @NAW (21, 73,p).
Section V. 1.5) For eaclp > n/2

1.5.1) v, = v+, 1y ~ N(0,0), 1, @ vector of
the same dimension as,.

This represents a single generation of the EP-NN algorithm,

Evolutionary programming was developed in the ear%r a single ANN model. The set of parents had= 20, a
1960’'s [17] as a means of solving complex optimizatiogin

. . le ANN model estimation consisted of a 1000-generation
problems by a stochastic numerical process that has feat qg\;

Ill. EVOLUTIONARY PROGRAMMING

; ith | luti Consider th bl , ando was set t00.05. A total of 29 independent ANN
In common with natural evolution. Consider the problem Qf,, 6|5 were estimated in the above fashion, each with Step

minimizing a function”() wherev is a vector of real values. 1.1) and 1.5.1) repeated independently of the other 28 model
A simple implementation of EP would proceed according Qtimations

the following pseudocode. The ANN models were ranked by MSE and the median in-

1) Generaten random vectorsy, - - -, y. sample MSE trial was selected as our ANN model used to

2) Until finished forecast out-of-sample, denoted as EP-NN(M) in the tables of
2.1) Sortyy, -+, v, by F'(+;), smallest to largest results. We also include for comparison and contrast the best
2.2) Delete bottom half ofy,. MSE ANN model and the worst MSE ANN model, denoted

2.3) Replace bottom half by; +7;, i =1,---,n/2. EP-NN(B) and EP-NN(W), respectively. We anticipated that

Typically, the random mutation; is made by sampling from the best MSE ANN model would overfit the data and perform
a multidimensional normal distribution with small variance (obadly on the out-of-sample forecasting perfod.
covariance). There are many variations of this classic EP (see
[14]). The utility of EP has been demonstrated in a variety of V. SELF-ADAPTIVE EVOLUTIONARY PROGRAMMING
contexts (e.g., [12] and [13]). The EP has also been appliedrhe choice ofc = 0.05 was, in fact, our own firsed
to evolving neural networks [16], [34], [41], with the essentighqc choice, but it remained quite robust to other challengers.
idea that the vector represents the parameters of the ANNye aiso considered, however, the possibility of self-adaptive
and thatF'(y) is a measure of the ANN's performance, choseg,tation, an algorithm we term self-adaptive EP (SEP-NN).
in our case to be the mean square error (MSE) of the forecggle SEp-NN algorithm proceeds much in the same way as the

of the ANN on in-sample data. EP-NN, except that each trial solution carries with it a vector
of terms describing the mutation variances to be used in the
IV. ANN FORECAST COMBINATION EP production of offspring (see [43]). We denote the evolvable

weights and biases of an ANN as ~,, then in the SEP

The EP-NN procedure used here is as follows. i Rt ]
scheme a trial solution is appended with a veetgrof the

0) Define: . . . .
¢2 as the dependent variable, and our forecast?cdis same dimension. When mutation of thth component ofy,
£, with is undertaken, a normal deviate of mean zero and standard
P

deviation equal to thgth component of, is added. The extant

Frp=Bip+Bopfie+ Baplor+ 61,9 (2, 7v1,p) vectorso,, are updated at the beginning of each generation. If
50 (2 Sa (2 ' we denote by, ; the jth component ofr,, then the update
020z Y2.p) + 00, (21 73) takes the form of

1) For each parent € {1,2,---,n} 0. = 0y exp[T'N(0,1) + 7N,(0, 1)]
1.1) For each parameter vecter,, ¢ = 1,2,3

1.1.1) Generatey; , uniformly distributed on
[—1, 1], independent of all other triajs

1.2) For each observation
1.2.1)

where N;(0,1) indicates a standard normal random variable
drawn independently of the other components of the vegjor
The parameters andr’ adopted the conventional values of

-1
( 2\/E) and (v/2k)~1, respectively, wheré is the total
3Ranking by cross validation, such as described for Kernel estimation, or

Uz = (14 exp(— z
( t Wl’p) ( + p( (%’p’o T VpL 1’t1 ranking by an information criterion, such as the Schwarz Criterion, are possible
+ 71 p,2%2,t))) mechanisms to avoid overfitting.
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number of weights and biases to be evolved. This scheme vggslared modeling errors to capture such clustering, termed
first proposed in [45] and has proved useful in similar anautoregressive conditional heteroskedasiqiyRCH). In the
earlier work to our own (e.g., [15] and [42)). context of stock returns, the residual from the model of the
Scope for further experimentation is unlimited: ANN’s cameturn is modeled as having time-varying variance. ARCH
achieve arbitrary mappings and be the output quantitative effects imply fat-tails unconditionally, so modeling ARCH
qualitative, and the EP is similarly a very flexible procedur&ffects promised to resolve both the nonidentical distribution
since mutation is simply a probability distribution mapping af the data and its leptokurtosisTypical in the literature

space into itself. investigating time-varying variances of stock returns, then, is
the assumption of conditional normality of the returns, with
VI. DATA ON INDIVIDUAL FORECASTS the first moment of the returns and the second moment of the

. . . return residuals modeled as autoregressive processes, though
We require a data set with well-known properties and a
a number of other approaches have been adopted [3].

large number of observations so that we have both the power .~ . . .
9 P ﬁndlwdual forecasts for use in the combining exercise are

o discriminate between the various combining methods aPodrecasts of the volatility in daily returns on the S&P 500

intuition for why some combining methods outperform others, . .
We conduct ogr exercise on fogrecasts of dai?y stock marksétf)Ck index, for the period January 1969 to September 1987, as

volatility—conditional stock return variance—from two We”_produced by two popular models of stock returns volatility: 1)

. - S the moving average variance model (MAV) and 2) the gener-
g?%vggerp\:gi ém{.iret?zcﬁ;:g? tr1126r?10{j9e?57’vgéetjérrfbtizgursl:\r/]gﬁzed autoregressive conditional heteroskedasticity (GARCH)
: md)del. These two methods for forecasting volatility are widely

well-understood properties aids in interpreting test results an . . .
A . ulsed by professional portfolio managers and academics and
also suggests specification checks of the combined models.

The exercise itself—forecasting volatility—is interesting in itd erform admirably, as will be demonstrated below. Improving

own right. Forecasting the volatility (the riskiness) of stockg" them“should not Pe regarded as a matter of course—they
.are not “straw men.

facilitates tracking the risk/return characteristics of a portfolio : S !
S R . ... Following the stock returns volatility literature, defingas
which includes stocks and adjusting the portfolio compositio . .
g daily stock return, then generically

when the risk/return characteristics become undesirable. Th
application certainly does not exhaust the pool of applications
in finance, let alone other fields with similar “problems”
of a wealth of competing forecasts. Ongoing work by thehe errore, has zero mean and has conditional variance
authors and others include credit-rating problems, mean-return

forecasting, and value-at-risk estimation (the monetary risk E(E|) = o?

of holding certain portfolios, often over short horizons of a

day to a month). Work in other fields, primarily engineeringvherel; is any available information the expectation may be
though stretching to biology, robotics, and beyond, refers g@nditioned upon. That is, volatility is unobserved but related
combining problems as data “fusion” exercises. Many of thete ;. Our task is to form a forecast of?: the volatility of
exercises are directed to “fusing” data from a multitude @ftock returns. Lefo and p; be estimates of the parameters

Tt = po + p17t—1 + €&

sensors, for targeting or tracking. po and p1, and let
Stock returns, often assumed to be independent and iden- ) o
tically normally distributed (i.i.d.), are in fact dependent, € =Tt — Po — P1Te—1. (5)

nonidentically distributed, and quite fat-tailed—nonnormal. . . _ .
y d Our market volatility measure i& which has expectation

The dependence of returns is largely captured with a simple a . .

toregressive term of order one [AR(L)]—a single lagged retuf’r%' The conditional variance forecast of the MAV model has
is used to forecast the current return. This sort of simple model 1
will explain between 1% and 15% of the variation of the return, 62 == Z e .
depending on the return series and its periodicity—daily, et
weekly, and so on. Market closings and sluggish flows of L .
information leading to nonsynchronous trading patterns aféth » chosen to minimize the Schwarz Criterfoand the
believed by some (e.g., [10] and [44]) to lead to this AR(lgargmetersoo and p; estimated with OLS. The conditional
structure in returns. The nonidentical distribution of the datériance forecast of the GARCH(1,1) model has

is revealed by the clustering of highly volatile periods. In
examining data with similar properties, [8] modeled the second

moment of inflation rates as varying conditionally on pastea heteroskedastic random variable does not exhibit a constant second

. . . . oment.
4
Slnce we update mutation variances before offspring are created, we aJBQtA leptokurtotic random variable is random variable with a fourth moment
what is known as a “sigma-first” strategy; see [18]. p

50ur data extend only to September 1987 to exclude the infamous stc‘)’}/:g‘:h is larger than that of a normally distributed random variable.

market crash of October 1987. The context of stable conditional data gener- 1he Schwarz Criterion is a likelihood-based information criterion which
ating processes is the only context in which model comparisons such as ff&igns @ penalty for use of modeling degrees of freedom. It equals the log
make sense, and the crash of 1987 produced such large and abrupt chafigdide likelihood function minus; Klog(T'), where K is the number of

in stock volatility that the assumption of stability may not be valid over thi§arameters in the model arfd is the number of observations available.

period. 9The value chosen far over the range 1 to 40 was 28.

~2 ~ ~A A2 A A2
0y = Qo+ Q103_1 + Qo€
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with parametersy, p1, ag, a1, and s estimated jointly with 1969-1979. Although it is sensible to retrain and re-evaluate
maximum likelihood methods under the assumption of condhe EP-NN and SEP-NN as we update the data set, this is
tional normality ofe;. The wide application of such modelscomputationally too onerous to attempt.
to the task of forecasting stock market volatility is well It may be helpful at this point to plot some of the data
documented and motivated [3], [39]. and compare the two forecasts which will be used in the
We use one-step-ahead out-of-sample GARCH and MAWmbining exercise, the MAV and GARCH forecasts. We also
forecasts beginning the first day of trading in January 1988lot the SEP-NN forecasts, but these will not be discussed
The MAV and GARCH model parameters are estimated witmtil Section VIII.
data from the first day of April 1969 to the last day of 1979 and Figs. 1 and 2 plot subsets of the in-sample data, covering
then used to produce the one-step-ahead out-of-sample Mp&fiods 1970 and 1974, respectively. The data plotted are
and GARCH forecasts for the first trading day of 1980. Ouhe squared residuals from (5) and volatility estimates from
data set is then updated by adding the first trading day of 198@ MAV, GARCH, and self-adaptive evolutionary model,
and dropping the first from 1969, the models then re-estimatedrmalized so that their average value is equal to one. Of
to produce a one-step-ahead out-of-sample forecast for tmeirse, since the data are strictly positive and quite skewed
second day in 1980, and so $hThis procedure of updating (the residuals are approximately distributedy@3, the points
and one-step-ahead out-of-sample forecasting is repeated uw#lbw one cluster more closely to one. The points (dots) are the
one-step-ahead out-of-sample MAV and GARCH forecastguared residuals, the line of circles is the MAV forecast, the
of daily returns volatility are produced for each trading dalgoxed line is the GARCH forecast, and the line with diamonds
from January 1, 1980 to September 30, 1987, constitutiigythe SEP-NN forecast.
the individual out-of-sample forecasts used in the combiningFig. 1 plots a year which presented a volatile period May
exercise. The most important feature of these forecasts, forough July and two less volatile periods on either side.
our purposes, is that the MAV and GARCH models used ta such quiet periods the MAV and GARCH forecasts are
produce them employ partially nonoverlapping informatiowirtually overlaid while in volatile periods the two are often
sets. Thus there may be an advantage to using a combiaede different; GARCH reacts much more swiftly than MAV
forecast as opposed to either of the individual forecsts. to changes in volatility. We see much the same pattern in
The in-sample observations 1969-1979 are used for tWda. 2, though the year 1974 was much more volatile due
purposes. First, the training and selection of the EP-NIN part to the OPEC oil price shock. We see remarkable
and SEP-NN models and choice of the window-width alivergences of forecasts from MAV and GARCH during
the Kernel estimatdf is performed exclusively with the volatile periods, and the very slow adjustment of the MAV
1969-1979 data using the in-sample forecasts from MAV aforecast causes it to forecast substantially higher volatility than
GARCH. Second, the first out-of-sample forecast from albARCH when brief periods of calm present themselves, such
of the models is made with only this in-sample data. Thas in August, October, and December 1974. While in some
MAV and GARCH in-sample 1969-1979 forecasts are used tases it appears the quick adjustment provided by GARCH
form the combining parameter weights for the forecast of thveas appropriate, as in June of 1970, the slower adjustment of
volatility of the first trading day of 1980 from the OLS, KernelMAV provides a better guide through the last half of 1974.
and EP-NN and SEP-NN modéfs.The information set is Hence there is hope that combining these two forecasts may
then updated one day at a time, in a rolling window fashigorovide us with a better volatility estimate than the use of one
just as with the formation of the MAV and GARCH out-of-or the other alone.
sample forecasts, and one-step-aheaidof-samplecombined
forecasts of all the methods are obtained, January 1, 1980 to
September 30, 1987. These are the forecasts used to evaluate VIl. COMPARING FORECASTS

the performance of the combining models. We must stressrirst, we evaluate the models’ abilities to reproduce broad

that the training and selection of the EP-NN and SEP-Nfdatures of the data, characterized by summary statistics on

models is carried out once and once only, on the in-sample di{a unconditional moments of the data and a test for residual
T Y- ) , o ) ... autoregressive conditional heteroskedasticity (ARCH) effects

Rolling window” model estimation is common in the combining litera- . . . .

ture (e.g., [21]). and normality. If a combining forecast method is to be relied
111 practice, having access to the forecasters’ information sets means &) then as a minimum it must pass basic specification tests and

combination of the forecasts is an inefficient use of the available informatiodo no worse than the forecasts incorporated in the combination.

The application to conditional variance forecasts in our paper should therefe‘fﬁese summary statistics and specification tests give some
be viewed as an exercise to compare the combining methods.

12we made use of a normal distribution Kernel and picked the windov\lll:]Slght on this minimum level of performanc?'
width to minimize the cross-validated Gaussian log-likelihood among all Next, we compare forecasts on the basis of root mean

Kernel estimators that removed evidence of ARCH at the 10% significansguared forecast error (RMSFE) and mean absolute forecast
level on the 1969-1979 period. The test performed was the ARCH Lagran

Multiplier (LM) test at lags 5 and 20. For a description of this test see footno%ﬁc.r (MAFE), n- and OUt'Of'fsamp_le' A tradltlonal measure of
14, the best forecasting method is a simple comparison of RMSFE

13The average combined forecast has weights= 0, 5, = 32 = 0.5 and and MAFE across competing methods, but this provides no

hence does not need to be estimated. Once the combining parameter weighésasyre of statistically significant difference in performance.
have been estimated—with oniy-sampleMAV and GARCH forecasts—the

out-of-sampleMAV and GARCH forecasts are used to produce the-of- F!nz_i”y' we compare pomblnlng methods on the b_aSIS of
sampleforecast of the volatility of the first trading day of 1980. statistical tests of superior performance—encompassmg tests
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Fig. 1. This plots a subset of the in-sample data, covering the year 1970. The data plotted are the squared residuals and the volatility estilates from t
MAV, GARCH, and evolutionary models, normalized so that their average value is equal to one. The MAV model volatility estimate is an average of past
squared residuals, and the GARCH(1, 1) volatility estimate is a function of the squared residual and volatility estimate of the last period. ThieISEP mo
volatility estimate is a nonlinear function of both the MAV and GARCH volatility estimates.

on out-of-sample data. This addresses the criticism that rankimgr models for stock volatility for the in-sample period April
models by RMSFE and MAFE does not provide a measute 1969 to December 31, 1979 and the out-of-sample period,
of statistically significant difference in performance acrostanuary 1, 1980 to September 30, 1987.
forecasting models. The first column in Table | contains the forecast method

The importance of these different criteria are inverselyame. Columns 2 and 3 contain the mean and standard
related to their order of presentation. The summary statistidsviation of actual stock returns volatility for the S&P 500
presented below indicate that all the methods studied att&#ilex as well as the mean and standard deviation of the stock
a satisfactory minimum of performance. The RMSFE anblatility forecasts produced by each method. We expect the
MAFE are traditional measures of performance but we withean of the various volatility forecasts to be similar to the
argue that they provide little information. The encompassiragtual mean and the standard deviation of the forecasts to
tests provide a sound statistical basis for model compariste smaller than that of the actual data. The mean should
and our argument for the superior utility of the EP methodse identical in-sample for the OLS, EP-NN, and SEP-NN
rests largely on the evidence from the encompassing testsforecasts, which it is.

o Columns 4-6 of Table | (the first three columns of the

A. Summary Statistics standardized returns statistics) contain summary statistics on

Table | contains summary statistics on the volatility forethe standardized return residuals from the S&P 500 index; i.e.,
casts and on the implied standardized return residuals frépf/52. When divided by its forecasted standard deviation,
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Fig. 2. Plots a subset of the in-sample data, covering the year 1974. The data plotted are the squared residuals and the volatility estimates\from the MA
GARCH, and evolutionary model, normalized so that their average value is equal to one. The MAV model variance forecast is an average of past squared
residuals, and the GARCH(2, 1) model variance forecast is function of the squared residual and variance forecast of the last period. The SEBno®del vari
forecast is a nonlinear function of both the MAV and GARCH variance forecasts.

the return residuals should have a standard deviation of on€Column 7 (the fourth column of the standardized returns
(as is the case for the actual or raw return residuals dividethtistics) contains the-value from an LM test of the null

by their sample standard deviation, shown in the first rowlypothesis that the standardized return residuals do not display
Stock returns distributions are well known to be leptokurtoti@RCH.* As expected, the raw return residuals display strong
compared to the normal distribution, and we see this in ofiyidence of ARCH with g-value of zero to three decimal

raw data, with a kurtosis of 5.749 in-sample instead of thre!aces for both the in-sample and the out-of-sample data. Stock

As stock volatility-forecasting models are designed to produ¥8 Iatlllty—forecas_tlng models are deS|gned_to remove ARC.:H
om return residuals and all the forecasting and combining

a standardized return residual series which is less leptokurtotiC . . ; . A
meéthods we investigate here succeed in removing significant

than the raw series, a reliable method for combining volatility
forecasts should have this property. Table | shows that all4The ARCH LM test is a regression-based test, which takes#hdrom

the forecasting and combining methods produce standardiZegyegression of squared errors on lagged squared errors, multiplié this
the sample size, and compares this to the critical value frarh distribution,

return residuals which are less skewed and leptokurtotic thgdyrees of freedom equal to the number of lagged squared errors in the
the raw series. The skewness is close to zero and the kurtosigggession. This test is appropriate under the null of no heteroskedasticity

. . inythe errors, and is performed with 12 lags. The results are qualitatively
close to three, both on the m-sample data, shown in Table I(@e’ntical with 24 lags. For a more detailed discussion of this test for ARCH;

and on the out-of-sample data, shown in Table I(b). see [3].
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TABLE | TABLE 1
(a) REPORTSSUMMARY STATISTICS ON THE IN-SAMPLE FITTED CONDITIONAL THE RooT MEAN SQUARED FORECAST ERROR AND MEAN ABSOLUTE FORECAST
VARIANCES, 62, AND STANDARDIZED RETURNS é:/62, FOR NEW YORK'S S&P ERROR FORALL THE MoDELS, FORNEW YORK's S&P 500 NDEX ON DAILY
500 INDEX ON DAILY DaTA 1969-1979. (b) RPORTSSUMMARY STATISTICS ON DATA, IN-SampPLE 1969:4-1979:122ND OuT-OF-SampLE 1980:1-1987:9
THE ONE-STEP-AHEAD OUT-OF-SAMPLE FORECASTED CONDITIONAL
VARIANCES, 67, AND STANDARDIZED RETURNS, é;/67, FOR NEW YORK'S N a 01.107G.1 ¢ ra 080-1-1987:9
S&P 500 NOEX ON DALY DATA 1980:1-1987-9. fic MEAN AND Method In-Sample, 1969:4-1979:12 | Out-of-Sample, 1980:1-1987:¢
STANDARD DEVIATION (DENOTED “STD” IN THE TABLE) OF THE VARIOUS RMSFE MAFE | RMST'E MAFE
VARIANCE FORECASTSARE PRESENTED FOR THE VARIOUS STANDARDIZED 10— x107% | x107* x 107
RETURNS THE STANDARD DEVIATION, SKEWNESS (DENOTED “SKEW” IN
THE TABLE), KURTOSIS ARCH LM TEST PROBABILITY VALUE, AND MAV 1.375 8.210 1.515 9.365
BERA-JARQUE NORMALITY TEST PROBABILITY VALUE ARE SHOWN
GARCH 1.368 8.173 1.530 9.292
Method | Variance Torecasts ‘ Standardized Returns Average 1.369 8,183 1.535 9.323
Mean Std Std  Skew  Kurtosis  ARCII  Normalivy Kernel 1.987 8.024 1.538 0.983
AT e Test et oLs 1.367 8177 | 1.531 9.279
p-Value p-Value
EP-NN(B) 1.350 8.166 1.535 9.321
Raw data 6.702 14397 | 1.000 0.350 5749 0.000 0.000 :
; - TP-NN(W 35 32 345
MAV 6.700 6.286 | 1.049 0.067  3.588 0306 ooy PPNNOW) 15T S.080 | 1.53 9-345
GARCIL | 6.681 5315 | 100 0.083 319 0.652 o000 FP-NNQM) | 1353 8190 | 1.535 9351
Average 6.691 5.768 1 1.019  0.077 3481 0.633 0.000 SEP-NXN 1.354 8.172 1.532 9.323
Kernel 6.564 5.523 | 0.995  0.097 3403 0.275 0.000
018 6.702 5.120 | 0.991  0.100 34T 0439 0.000
TP NN(B) | 6.702 5537 | LO0L 0.079 3316 0.636 oo though the assumption of conditional normality of the data is
EP-NN(W) - 6.702 53810 1.012 0034 338 0.234 n.ooo  Clearly violated. The lack of conditional normality impinges
EP-NN(M) | 6.702 5482 | 1020 0.009 3433 0.650 o000 on the efficiency of the GARCH method, but does not lead
SEP-NN | 6702 5437 | LO03 0.061 3339 0.636 oon [0 inconsistent estimation or biased forecasting, and so this
) — failure is of second-order significance.
(@)
— e B. Summary Measures of Performance
Method Variance Torecasts Standardized Returns
Mean Std Sid  Skew Kurtosis  ARCI  Normality The traditional summary measures of the forecaSting meth-
10-5 = Tost res  0ds is a comparison of RMSFE and MAFE across competing
pValie  pValue methods. Although all of our methods were picked with a MSE
Raw data | 8.331 15514 | 1.000  0.062 1,468 0.000 0.000 C”t_er'on method, co_mparlsc_m by mean absolute deviation is
MAV 8.394 4773 | 1.053  0.051 4320 0.768 0.000 typlcally (-:0nS|de.red In'FereStI.ng becagsg researchers often have
— - - — little confidence in their choice of criteria to minimize. If we
GARCH 8.247 3887 0 1.02%8  0.013 4223 0.370 0.000
ol e o 000 knew beyond a shadow of a doubt that the data were normally
Average 832 1.27% 0 02 4.257 637 . L. . .
i ’ : > > : distributed, there would be no interest in MAFE, but as we
Sorno 3187 4086 | 1,033 0.011 1312 0403 0.000 : . .
hornel 3157 086 0 : ' typically do not, alternative measures of goodness of fit to
oLs S 3654|1023 0015 1263 0569 0000 MSE are provided. Table Il contains the root mean squared
LP-NNB) | B30 1008 |1.025 002 4400 0138 0080 forecast error and mean absolute forecast error for each of the
EP-NN(W) | 8.423 BR0LLOIY 017 4347 0.3 0.000 jndividual models and each of the combining methods for the
EP NNV | 8481 3775 0 L018 0.047 4440 0.602 0.000 in-sample period April 1, 1969 to December 31, 1979, and the
SEP-NN 3108 3.632 | 1.018 0.022 4318 0578 0.000 out-of-sample period, January 1, 1980 to September 30, 1987.
. Since the parametric modeling approaches provide the great-
®) est degrees of freedom, the EP methods naturally perform best

in-sample among the parametric models. The nonparametric
evidence of ARCH effects. Further, assuming condition&lernel method performs best overall in-sample. It is the
normality, as is often done in empirical studies of returout-of-sample behavior that is informative, for if a method
volatility, implies that the standardized return residuals shouldver-fits” the data, the out-of-sample performance typically
be normally distributed. The last column of Table | containflls far short of the in-sample performance. What we find
the p-value of the Bera-Jarque normality test on the stam Table Il is no evidence of this problem with the EP-NN
dardized return residual8.These tests for normality show aforecasts, from the best, worst, or median in-sample MSE
statistically significant deviation from the normal distributiontanked models, and similarly no such problem with the SEP-
This is a widely documented feature of stock return data, niiN. On the out-of-sample data these methods are in the middle
peculiar to a particular stock index or time period [3]. of the pack, with lower RMSFE'’s than the MAV method,
These summary statistics and tests indicate that all thie worst performer, and not much higher RMSFE’s than the
the forecasting and combining methods perform reasonakbgst performer GARCH. Similar rankings come from MAFE

15The Bera-Jarque test is an LM test for normality, based on standardiZEfasures. We alsp 'See no prOblem of overflttlng with the
third and fourth moments [28]. Kernel method. It is in the middle of the pack by measure
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TABLE I
THE PrROBABILITY VALUES OF THE TESTS OFENCOMPASSING ON THEONE-STEP-AHEAD FORECASTED CONDITIONAL VARIANCES, &?, FOR NEW YORK'S

S&P 500 NDEX ON DaiLy DaTta 1980-1987. HE TESTSARE ON #1 PARAMETER IN THE REGRESSIONEJ',t = 6y + 64 6@ + n7¢ WHERE

o= & — (,Jz ; 1S MODEL j's OuT-OF-SAMPLE FORECAST ERROR AND 6% , IS MODEL k’s OUT-OF-SAMPLE FORECAST. COLUMNS 2-10
(CoLumns 1-9 oF THE DATA ENTRIES) CONTAIN p-VALUES ASSOCIATED WITH THE t-STATISTICS ON 6 FOR ALL POSSIBLE j — k COMPARISONS

LError Forecast

MAV  GARCH Avcrage Kemel OLS  EP-NN(B) EP-NN(W) EP-NN(M) SEP-NN
MAV — .001 .000 .001  .000 .000 .000 .000 .000
GARCH 021 024 023 .025 022 025 010 013
Average .000 .005 004 .002 .003 004 001 .001
Kernel 038 052 041 035 023 034 012 017
OLS .060 41 .085 091 — 083 090 044 .019 ‘
EP-NN(B) | .020 029 022 012 017 .009 .004 007
EP-NN(W) | .073 103 {081 068 .063 035 — 019 025
EP-NX(M) | .071 .100 079 053 .062 .039 042 020
SEP-NN 091 183 123 113 1105 102 .086 .037

of RMSFE, and it has the best MAFE measure on th&(jk) are significant, or if both,(k;) and ,(jk) are not
out-of-sample data. Comparison by RMSFE and by MAFE&ignificant. Nonoverlapping information sets may lead to both
provides us with no indication of whether any one model isstimated coefficients being significant, and multicollinearity
performing significantly better than the other models, howevenay lead to both estimated coefficients being insignificant.
We, therefore, investigate in the next section an additionalColumns 2—10 of Table Il (columns 1-9 of the data entries)
means of comparison between forecasting models that allogestainp-values associated with the heteroskedasticity robust
for tests of significance: comparison by forecast encompassitigtatistics oré; for all possiblej — k comparisond® P-values

less than 0.01 reveal that the out-of-sample forecast from the
C. Tests of Forecast Encompassing model listed along the top of the table explains, at the 1%
ﬁégnificance level, the out-of-sample forecast error from the
model listed down the left side of the table and thus that the
model listed down the side cannot encompass the model listed

Encompassing-in-forecast tests [5], [21] revolve around t
intuition that a Model; should be preferred to a Modél if
Model j can explain what Modek cannot explain, without o
Model k£ being able to explain what Modél cannot explain. along the top, at the,l% level of §|gn|f|cance. o
Encompassing-in-forecast tests are designed to provide a sta-I:hese results provide strong evidence of the superiority of

tistically significant test of this characteristic. As such, the tetaqe SEP-NN method iover the competing Iineaii rr;]ethods. The
provides an obvious method for ranking forecasts. SEP-NN out-of-sample forecasts encompass all the competing

A set of OLS regressions of the out-of-sample forecallpear methods as well as the Kernel method at the 5% level
error from one model on the out-of-sample forecast from t significance or better. The SEP-NN coefficient [refer to

other provide the formal test for encompassing-in-foreca ?.)] Is significant at the 0.1% level in the MAV out-of-sample
Let é't — & _ 52, be Model j's out-of-sample forecast orecast error regression, at the 0.1% level in the average out-
gt T Mt 3,

- i 0, i
error ands? , be Modelk’s out-of-sample forecast. The testOf-sample forecast error regression, at the 1.3% level in the

-Of- i 0,
for encompassing involve testing for significance of the iGAIT(.:Hti?UtKOf Sa:ﬂplf fi)recasti eiror regtressmn, at the_ 1'7/2
parameter in the regression in (6) evel in the Kernel out-of-sample forecast error regression, al

N the 4.9% level in OLS out-of-sample forecast error regression,
Eir =00+ 916-,% + 7. (6) while never having the SEP-NN out-of-sample forecast error
lained at better than the 9.4% level. With respect to the

. . ex
To test the null hypothesis that n(_alther model encompasseR . ANN combination methods, SEP-NN encompasses EP-
the other we perform two regressions. Regress the out- N(B) and EP-NN(W) at the 5% level as well, but not

sample forecast error from Model on the out-of-sample .
. Y the EP-NN(M), suggesting that EP-NN(M) and SEP-NN are
forecast from Models, as in (6), regression;k.” Call the possibly picking up slightly different effects. No other method

resulting estimate of thé, coefficient 4 (jk). Call . (kj) gooo nearly this well. The EP-NN(M) and OLS encompass
the 6, estimate that results from the analogous regreskjon

If 6,(jk) is not significant, buté; (kj) is significant, then  16These statistics make use of a modification of the heteroskedasticity-

we reject the null hypothesis that neither model encompas%‘ﬁ covariance matrix estimat_or [51] ter_med “H_C_3"_in [35]. We expect to
ve heteroskedastic errors in this regression, so it is important to account for

the other in favor of the alternative hypotheSIS that MOdﬁEteroskedasticity. A simple demonstration of this is as follows. The residual
j encompasses Modél. We say that Modek encompasses «; can be rewritten as;1: wherey, is i.i.d., with mean zero and variance one.

Model j if conversely él(kj) is not Significant butél (Jk) The out-of-sample forecast error in predictiffg(an object we do not actually
is sianifi ' We fail N h Ilh h iy h ith observe, but rather estimate) making usepf is €7 — 67 = o7 (n? — 1) so
Is significant. We fall to reject the null hypothesis that neithgp; ine forecast is unbiaseH]e; — o7] = 0, but the forecast error, of even

model encompasses the other in forecast if bﬁqta'kj) and the optimal forecast, is heteroskedastic.
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only five of the eight alternative models at the 5% levethe SEP-NN and OLS models for various pairs of GARCH-
and OLS does not encompass these as strongly as does &R/ forecast inputs, while the pillars in Fig. 3(c) and (d)
NN. EP-NN(W) encompasses four, the Kernel only one, amovide some indication as to whether or not the differences
GARCH encompasses none. The MAV out-of-sample forecast response are relevant for the in-sample period. We can
is routinely encompassed at the 0.1% level or better, tpeoduce analogous surfaces for the out-of-sample period but
average at the 0.5% level or better, neither encompassinghase are less interesting. This is because the models are re-
single other model. estimated as we “move” through the data with the rolling
Also of interest is that all of the EP models we lookeavindow updating procedure outlined in Section VI, and hence
at performed well, suggesting that the pseudorandom numbgrs surface changes over time in the out-of-sample period.
used to evolve the networks were not critical in finding a model As displayed in Fig. 3(d), most of the data points occur in
which would perform well on out-of-sample criteria. The EPthe area where the SEP-NN and OLS forecasting functions
NN model which had the best in-sample MSE, EP-NN(B)ntersect, thus the similarity of the SEP-NN and OLS forecast
did perform somewhat worse than the other ANN models mummary statistics of Table I(a). We also see, however, that
the out-of-sample encompassing tests. This suggests that tlren@erous data points occur away from the curve intersections,
may be some problems with overfitting even if the neurah particular when one or both of the MAV and GARCH
network architecture includes only three nodes as all our Etecasts are large in magnitude. In these areas we get some
models do. intuition for what the SEP-NN combination is doing that is
Of further and related interest is the fact that we also lookelifferent than the OLS combination. For instance, the SEP-
at performance statistics for several SEP-NN models, thoseNifl combination makes very little adjustment in its forecast as
the best evolved network, the median, and worst, though we GARCH falls below the value of the MAV forecast when
report only that of the best. Interestingly, the SEP proceduteey are both large (greater than four) and in fact increases
showed no symptoms of overfitting in such comparisons, witts forecast when the MAV forecast is close to four and the
each network performing similarly well. This indicates thaGARCH forecast is greater than two but falling. In this area
our choice of architecture and training algorithm successfullye are riding up the curve in the SEP-NN surface. We see
compromised between functional and parametric flexibilityuch a coincidence of forecasts in Fig. 1 in June of 1970 and

and the tendency to overfit. in October 1974 displayed in Fig. 2. Very short periods of
quiet in the midst of high volatility will produce such patterns
VIIl. D ISCUSSION with sharply falling GARCH forecasts but little change in the

. AV forecast. The OLS forecast is constrained, because of
As the forecasts from all the models are a function 9

| bl he MAV and GARCH i s linearity, to treat such periods the same way it treats all
only two variables—the an Inputs—we rnay%eriods, moving up and down primarily with changes in the

pr:ot the tbhreed-dfimensionallsu;face t:at lmapshtheé'se inputs ih‘f«RCH forecast (the slope in the MAV axis is quite small).
the combined forecast. Fig. 3(a)~(d) plots the SEP-NN a is in these periods, where the SEP-NN forecast reacts little

OLS combining surfaces estimated in-sample together with echanges in the GARCH forecast, that the SEP-NN forecasts

data points used in this estimation. Fig. 3(a) shows only t}é?so dominate the OLS forecasts. This is displayed by the

SEP forecasting surface, (b) shows only the OLS forecas“gﬂadominance of flagged data points in the back middle of

surface, (c) shows only the data points, and (d) shows all t F'g 3(c) and (d) where both GARCH and MAV forecasts are
surfaces and data in a single plot.

. arge.
The forecasts are normalized so that the average valuerhe SEP-NN forecast also reacts quite strongly to large

is equal to one, as in Figs. 1 and 2. The curved Sunca\%lues of the MAV forecast, in particular if they are associated

of d?amonds plots the functional relationship—estimated With moderate values (3-5) of the GARCH forecast, as seen in
tEe 3:\7mp:jegzgcﬁp.md1929 tlof December égzlg_stée;\’ﬁ e steeply rising section of the SEP-NN surface in Fig. 3(a)
the an Individual forecasts and the “Vand (d). In this steeply rising section of the SEP-NN surface,

combined forecast. The nonlinearity of the SEP-NN produc e back left of Fig. 3(d), the OLS forecasts were as often

the curved relationship shown in Fig. 3(a) and (d). Similart ssociated with smaller errors as were the SEP-NN forecasts,

in Fig_. 3(5))fand (), thﬁ flat_”surfac_e_ of circlis ShO\r’]VS ';Ihe O erhaps indicating that the architecture of the SEP-NN model,
combined forecast. The pillars rising up from the floor ith three nodes, was insufficient to allow it to moderate

Fig. 3(c) anq d indic_ate actual in-sample data points whi action to falling GARCH forecasts and stable MAV forecasts
were used in estimating the OLS and EP-NN and SEP-

dels (the height of the pil is sliahtl ised th en the MAV forecast was greater than four and the GARCH
models (the _elg_t_o the pillars is slightly raised so % ecast was between three and five. An example of this is seen
they are easily visible through the surfaces). The flagg

. ; ? Fig. 2 in November of 1974.
pillars (roughly half of all the data points) are data points 9
for which the SEP-NN combination produces a smaller error IX. CONCLUSIONS
than does the OLS combination. The unflagged pillars are datrw : : . .
. . L e have described an experiment which evolves single
points for which the OLS combination produces a small%ri

error than does the SEP-NN. The surfaces in Fig. 3(a) an(giden—layer perceptrons to combine forecasts of stock price

(b) indicate the difference in response we can expect fro\r/quatility, demonstrating the utility of evolutionary program-
ming in a concrete application. Such forecasting is important

17Full details of evolved parameters are available from the authors.  in its own right, in particular in the context of financial
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Fig. 3. Plots the SEP-NN and OLS combining surfaces with data points from 1969-1979. The forecasts are normalized so that the average value is equal
to one. The curved surface of diamonds plots the functional relationship between the MAV and GARCH individual forecasts and the SEP-NN forecast. The
flat surface of circles shows the OLS combined forecast. (a) shows only the SEP forecasting surface (diamonds), (b) shows only the OLS foracasting surf
(balloons), (c) shows only the data points (pillars), and (d) shows all the surfaces and data in a single plot with SEP forecasts superior to OLS flagged.

risk management. Evolved ANN models were shown to hapeesented cover only one example, and it remains to be seen
a strong advantage over simple linear models and a nadhthey are generally more applicable. It is also hoped that
parametric Kernel method. A self-adaptive scheme was algother research might discover methods of dynamic param-
shown to yield some benefits over more simple evolutionagger adjustment, so that the evolutionary programs are more
programming schemes. sensitive in monitoring their own performance throughout a
Careful examination based on statistical tests revealed thédl. Evolving the nonlinear ANN weights as new information
the evolved networks were significantly superior to linedtows in, rather than just the linear weights as done here, is
combination methods described in the forecast combinationt computationally feasible with our large data set, but is a
literature. It should be emphasized, however, that the resultgural next step to take. This application also does not exhaust
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the pool of applications for which these combining techniqugss]
may be used, in finance and beyond.
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