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Evolving Artificial Neural Networks
to Combine Financial Forecasts

Paul G. Harrald and Mark Kamstra

Abstract—We conduct evolutionary programming experiments
to evolve artificial neural networks for forecast combination.
Using stock price volatility forecast data we find evolved networks
compare favorably with a naı̈ve average combination, a least
squares method, and a Kernel method on out-of-sample forecast-
ing ability—the best evolved network showed strong superiority
in statistical tests of encompassing. Further, we find that the result
is not sensitive to the nature of the randomness inherent in the
evolutionary optimization process.

Index Terms—Evolutionary programming, financial forecast-
ing, forecast combination, neural networks, self-adaptive evolu-
tionary programming.

I. INTRODUCTION

POLICY and decision makers must typically adopt a po-
sition based on a host of conflicting opinions about the

future course of events. Processing multiple and conflicting
data is an inherently complex and in many cases subjective
procedure. We focus here on this process of consensus-making
when the information available to the decision maker is
quantitative. For instance, the governor of a central bank may
have several forecasts of exchange rate movements available
that need to be considered in setting the prime interest rate.
These forecasts may come from forecasters of differing ability
and reputation and from forecasters with different information
at hand. Forming some sort of consensus of the exchange rate
movement forecasts is required before the prime rate can be
set. A simple average of the forecasts could be taken, but
this ignores the ability and reputation of the forecasters, since
equal weight would be given to each forecast. It is this basic
observation that has led to what is now a voluminous literature
on forecastcombining.

The “optimal” weighting scheme of [1] is based on the
covariances of the individual forecasts with the actual realized
values of the variable being forecasted. Subsequent work [6]
extended this notion of using past forecasts to form a superior
combination. Examples from this body of work include the use
of unconstrained least squares regression of the actual values
on the forecasts to form optimal weights, the correction of
serial correlation in the forecast errors, and the use of Bayesian
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updating techniques to formally allow the weights on forecasts
to evolve with new information [19], [37], [20].

Only linear combinations of the individual forecasts have
thus far been considered. This is a substantial, most likely
inappropriate, restriction and one with serious implications
for the efficiency or even the consistency of the combined
forecast. For example, consider the case of a dependent
variable , where is an innovation and

and are known explanatory variables. If forecaster 1
has the model and forecaster 2 has the model

, then any linear combination of the two forecasts
will be inferior to the nonlinear forecast , with

. There exists some empirical evidence
for the gains from incorporating nonlinear combination of
forecasts, specifically in the context of combining financial
forecasts of stock market volatility [7]. Such complications
with nonlinearity are becoming more widely appreciated in
modeling economic data in particular, as evidenced in recent
work [32] and the wealth of new tests for nonlinearity [4],
[30], [33], [49], [50].

Artificial neural networks (ANN’s) have the ability to
approximate arbitrarily well a large class of functions [23],
[25]–[27], [32], [46], [52]–[54]. ANN’s, therefore, have at
least the potential to capture complex nonlinear relationships
between a group of individual forecasts and the variable
being forecasted, which simple linear models are unable to
capture. Readers should be aware that ANN modeling has
been criticized as a “black box” (e.g., [11]). If care is not
taken, all intuition for the relationship between the forecasts
and what is being forecast may be lost. It is also important
to recognize that the very act of combining forecasts is
an admission of some sort of failure of the models from
which the forecasts are produced. If we are given all the
information used in generating the individual forecasts being
combined, it is always better to construct a single “super
model” that encompasses this full information set and not
combine the individual forecasts at all. What we are attempting
to demonstrate here is the utility of the ANN model if we are
faced with only forecasts to combine.1

1In an unrelated literature [55], it is noted that competing nonlinear
“generalizers” making use of identical information sets can be eliminated
with a winner-takes-all strategy or they can be combined, termed “stacked
generalization,” in a possibly nonlinear fashion. This is similar to what we
hope to do here. Our problem, however, is to construct the best forecast as
a function of forecasts each based on at least partially unique information,
without access to anything but the final forecasts. We are not facing the
problem of how best to use all the available information, but rather how best
to combine individual forecasts themselves based on information unknown
to us.
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A typical training method for the ANN modeling is some
manner of supervised learning on a training sample, of which
the familiar backpropagation is an example. It is almost
certain, however, that in many optimization problems for
which ANN’s are considered to be appropriate architectures
for search over mappings, the state space will exhibit many
local optima [32], [2], rendering gradient-descent methods
such as backpropagation unreliable.

In response to this problem of local optima, techniques
of evolutionary optimization such as genetic algorithms and
evolutionary programming (EP) have been applied to the
training of ANN’s (e.g., [31], [36], [38], [41]).

This paper describes the ANN method of forecast combina-
tion of [7] and reports on EP experiments to evolve suitable
parameterizations of a given ANN architecture. In Section II
we present combining methods. In Sections III, IV, and V the
evolutionary programming approach to estimation of the ANN
model is presented in detail. Section VI is a discussion of the
data to be used to illustrate these techniques in an application.
In Section VII formal comparisons of the different techniques
of forecast combining are presented. Section VIII offers a
discussion of the results with some intuition. Section IX
concludes.

II. COMBINING METHODS

First we present some traditional combining methods to
be used in comparison with our ANN method, second an
alternative method which is nonparametric, namely the Kernel
method, and third, our ANN combining technique.

A. Traditional Combining Methods

There are now many commonly employed methods for
combining forecasts [6], [20]. The assumption that the con-
ditional expectation of the variable being forecasted is a linear
combination of the available forecasts is consistent across all
combining methods. Thus when combining two individual
forecasts and , a single combined forecast is
produced according to (1) by appropriate choice of weights

, and

(1)

The cross-sectional average of the individual forecasts (de-
noted “Average”), perhaps the most widely used combining
method, sets and .

It can be shown that a multivariate ordinary least squares
(OLS) regression of the variable being forecasted on the
individual forecasts in-sample can be used to obtain “optimal”
forecast weights , and for use in out-of-sample
combining [19]. This combination will in general be more
efficient than the simple average. We have also considered
Bayesian combination methods, but these have been found to
have little advantage over classical methods at the forecasting
horizon we investigate in this paper [37] and are not pursued
further here as a point of comparison.

B. Kernel Estimation

Kernel estimation is a nonparametric smoothing technique
widely used in modeling of economic and other data; see [22].
The technique essentially forms multidimensional histograms
of the data to discover associations between the dependent
and the independent variables. The nature of these associations
can be almost arbitrarily nonlinear, but uncovering these asso-
ciations has one very troublesome technicality—determining
the width of the histogram bars, called thewindow-width.
The choice of window-width can be data driven. One popular
data-driven method is cross validation, in which the window-
width is chosen by minimizing or maximizing some objective
function on the cross-validated data over a grid of possible
window-widths.2

A second technicality, but less troublesome as a matter of
practice, is the choice of the form of the histogram itself.
Simple on–off bars is one option, although a more popular
choice has a probability distribution (such as the normal
distribution) centered on the middle of the bar.

C. Artificial Neural Network Combining

The mechanics of ANN modeling are now fairly well
understood (e.g., [32]), and a review of ANN’s in general
is not undertaken here: we restrict attention to the application
of ANN’s to forecast combination.

Consider the task of combining two forecasts. Let
denote the forecast from model for time . Let and

denote, respectively, the in-sample mean and in-sample
standard deviation of the variable being forecasted out-of-
sample. We consider ANN models of the form in (2)–(4),
from [7]

(2)

(3)

(4)

where is an index whose use will be described below,
, and are parameters to be estimated in a manner

described below, is a vector of the parameters,
and is the forecast of the dependent variable produced
by the ANN method. From (3) we see that the input layer
accepts as activation the forecasts to be combined. The input
nodes are linked to a hidden layer of three nodes, and also
directly to an output node, as is a bias. The hidden nodes
and output node use a nonlinear sigmoidal filterwhich

2To implement cross validation, the Kernel weights are estimated on a
subset of the data, and then the estimated weights are used to forecast the
remaining portion of the data. The “out-of-sample” forecasts are then collected
and the process repeated, leaving out a different subset of the data each time,
until “out-of-sample” forecasts for the entire data set are produced. (A cross-
validation estimation which has 1/N of the data omitted at a time is called an
N-fold cross-validation.) The model specification that produces cross-validated
forecasts with, say, the lowest mean squared error, is then selected as “best”
[24], [29], [48]. Further studies include the derivation of optimality results
for a pseudo-likelihood function [40] and many empirical studies (e.g., [47]
and [9]).
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maps into (0,1). The standardization of forecasts from each
model is given in (2). This standardization is employed,
together with the appropriate choice of the , to ensure
that the function in (3) typically maps into the region
close to 1/2 and not typically close to zero or one. Equation
(4) makes explicit the manner in which the outputs from
the functions are to be used to form the final com-
bined forecast. As the estimation of (4) will be based on
evolutionary programming and “self-adaptive” evolutionary
programming, we will refer to these models generically as the
EP-NN method and the SEP-NN method, respectively. The
EP-NN method is described in Section IV and SEP-NN in
Section V.

III. EVOLUTIONARY PROGRAMMING

Evolutionary programming was developed in the early
1960’s [17] as a means of solving complex optimization
problems by a stochastic numerical process that has features
in common with natural evolution. Consider the problem of
minimizing a function where is a vector of real values.
A simple implementation of EP would proceed according to
the following pseudocode.

1) Generate random vectors .
2) Until finished

2.1) Sort by , smallest to largest
2.2) Delete bottom half of .
2.3) Replace bottom half by , .

Typically, the random mutation is made by sampling from
a multidimensional normal distribution with small variance (or
covariance). There are many variations of this classic EP (see
[14]). The utility of EP has been demonstrated in a variety of
contexts (e.g., [12] and [13]). The EP has also been applied
to evolving neural networks [16], [34], [41], with the essential
idea that the vector represents the parameters of the ANN
and that is a measure of the ANN’s performance, chosen
in our case to be the mean square error (MSE) of the forecast
of the ANN on in-sample data.

IV. ANN FORECAST COMBINATION EP

The EP-NN procedure used here is as follows.

0) Define:
as the dependent variable, and our forecast ofas
, with

1) For each parent

1.1) For each parameter vector

1.1.1) Generate uniformly distributed on
[ 1, 1], independent of all other trials.

1.2) For each observation

1.2.1)

1.3) For each parent

1.3.1) Estimate by
OLS, population regression .

1.4) Sort the array over by ascending MSE
from regression of on a constant, ,

, , and .
1.5) For each

1.5.1) N(0, ), a vector of
the same dimension as .

This represents a single generation of the EP-NN algorithm,
for a single ANN model. The set of parents had , a
single ANN model estimation consisted of a 1000-generation
run, and was set to . A total of 29 independent ANN
models were estimated in the above fashion, each with Step
1.1) and 1.5.1) repeated independently of the other 28 model
estimations.

The ANN models were ranked by MSE and the median in-
sample MSE trial was selected as our ANN model used to
forecast out-of-sample, denoted as EP-NN(M) in the tables of
results. We also include for comparison and contrast the best
MSE ANN model and the worst MSE ANN model, denoted
EP-NN(B) and EP-NN(W), respectively. We anticipated that
the best MSE ANN model would overfit the data and perform
badly on the out-of-sample forecasting period.3

V. SELF-ADAPTIVE EVOLUTIONARY PROGRAMMING

The choice of was, in fact, our own firstad
hoc choice, but it remained quite robust to other challengers.
We also considered, however, the possibility of self-adaptive
mutation, an algorithm we term self-adaptive EP (SEP-NN).
The SEP-NN algorithm proceeds much in the same way as the
EP-NN, except that each trial solution carries with it a vector
of terms describing the mutation variances to be used in the
production of offspring (see [43]). We denote the evolvable
weights and biases of an ANN as , then in the SEP
scheme a trial solution is appended with a vectorof the
same dimension. When mutation of theth component of
is undertaken, a normal deviate of mean zero and standard
deviation equal to theth component of is added. The extant
vectors are updated at the beginning of each generation. If
we denote by the th component of , then the update
takes the form of

where indicates a standard normal random variable
drawn independently of the other components of the vector.

The parameters and adopted the conventional values of

and , respectively, where is the total

3Ranking by cross validation, such as described for Kernel estimation, or
ranking by an information criterion, such as the Schwarz Criterion, are possible
mechanisms to avoid overfitting.
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number of weights and biases to be evolved. This scheme was
first proposed in [45] and has proved useful in similar and
earlier work to our own (e.g., [15] and [42]).4

Scope for further experimentation is unlimited: ANN’s can
achieve arbitrary mappings and be the output quantitative or
qualitative, and the EP is similarly a very flexible procedure,
since mutation is simply a probability distribution mapping a
space into itself.

VI. DATA ON INDIVIDUAL FORECASTS

We require a data set with well-known properties and a
large number of observations so that we have both the power
to discriminate between the various combining methods and
intuition for why some combining methods outperform others.
We conduct our exercise on forecasts of daily stock market
volatility—conditional stock return variance—from two well-
known models over the period 1969–1987, yielding thousands
of observations.5 The fact that the models we combine have
well-understood properties aids in interpreting test results and
also suggests specification checks of the combined models.
The exercise itself—forecasting volatility—is interesting in its
own right. Forecasting the volatility (the riskiness) of stocks
facilitates tracking the risk/return characteristics of a portfolio
which includes stocks and adjusting the portfolio composition
when the risk/return characteristics become undesirable. This
application certainly does not exhaust the pool of applications
in finance, let alone other fields with similar “problems”
of a wealth of competing forecasts. Ongoing work by the
authors and others include credit-rating problems, mean-return
forecasting, and value-at-risk estimation (the monetary risk
of holding certain portfolios, often over short horizons of a
day to a month). Work in other fields, primarily engineering
though stretching to biology, robotics, and beyond, refers to
combining problems as data “fusion” exercises. Many of these
exercises are directed to “fusing” data from a multitude of
sensors, for targeting or tracking.

Stock returns, often assumed to be independent and iden-
tically normally distributed (i.i.d.), are in fact dependent,
nonidentically distributed, and quite fat-tailed—nonnormal.
The dependence of returns is largely captured with a simple au-
toregressive term of order one [AR(1)]—a single lagged return
is used to forecast the current return. This sort of simple model
will explain between 1% and 15% of the variation of the return,
depending on the return series and its periodicity—daily,
weekly, and so on. Market closings and sluggish flows of
information leading to nonsynchronous trading patterns are
believed by some (e.g., [10] and [44]) to lead to this AR(1)
structure in returns. The nonidentical distribution of the data
is revealed by the clustering of highly volatile periods. In
examining data with similar properties, [8] modeled the second
moment of inflation rates as varying conditionally on past

4Since we update mutation variances before offspring are created, we adopt
what is known as a “sigma-first” strategy; see [18].

5Our data extend only to September 1987 to exclude the infamous stock
market crash of October 1987. The context of stable conditional data gener-
ating processes is the only context in which model comparisons such as ours
make sense, and the crash of 1987 produced such large and abrupt changes
in stock volatility that the assumption of stability may not be valid over this
period.

squared modeling errors to capture such clustering, termed
autoregressive conditional heteroskedasticity6 (ARCH). In the
context of stock returns, the residual from the model of the
return is modeled as having time-varying variance. ARCH
effects imply fat-tails unconditionally, so modeling ARCH
effects promised to resolve both the nonidentical distribution
of the data and its leptokurtosis.7 Typical in the literature
investigating time-varying variances of stock returns, then, is
the assumption of conditional normality of the returns, with
the first moment of the returns and the second moment of the
return residuals modeled as autoregressive processes, though
a number of other approaches have been adopted [3].

Individual forecasts for use in the combining exercise are
forecasts of the volatility in daily returns on the S&P 500
stock index, for the period January 1969 to September 1987, as
produced by two popular models of stock returns volatility: 1)
the moving average variance model (MAV) and 2) the gener-
alized autoregressive conditional heteroskedasticity (GARCH)
model. These two methods for forecasting volatility are widely
used by professional portfolio managers and academics and
perform admirably, as will be demonstrated below. Improving
on them should not be regarded as a matter of course—they
are not “straw men.”

Following the stock returns volatility literature, defineas
the daily stock return, then generically

The error has zero mean and has conditional variance

where is any available information the expectation may be
conditioned upon. That is, volatility is unobserved but related
to . Our task is to form a forecast of : the volatility of
stock returns. Let and be estimates of the parameters

and , and let

(5)

Our market volatility measure is which has expectation
. The conditional variance forecast of the MAV model has

with chosen to minimize the Schwarz Criterion8 and the
parameters and estimated with OLS.9 The conditional
variance forecast of the GARCH(1,1) model has

6A heteroskedastic random variable does not exhibit a constant second
moment.

7A leptokurtotic random variable is random variable with a fourth moment
which is larger than that of a normally distributed random variable.

8The Schwarz Criterion is a likelihood-based information criterion which
assigns a penalty for use of modeling degrees of freedom. It equals the log
of the likelihood function minus1

2
Klog(T ), whereK is the number of

parameters in the model andT is the number of observations available.
9The value chosen forn over the range 1 to 40 was 28.
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with parameters , and estimated jointly with
maximum likelihood methods under the assumption of condi-
tional normality of . The wide application of such models
to the task of forecasting stock market volatility is well
documented and motivated [3], [39].

We use one-step-ahead out-of-sample GARCH and MAV
forecasts beginning the first day of trading in January 1980.
The MAV and GARCH model parameters are estimated with
data from the first day of April 1969 to the last day of 1979 and
then used to produce the one-step-ahead out-of-sample MAV
and GARCH forecasts for the first trading day of 1980. Our
data set is then updated by adding the first trading day of 1980
and dropping the first from 1969, the models then re-estimated
to produce a one-step-ahead out-of-sample forecast for the
second day in 1980, and so on.10 This procedure of updating
and one-step-ahead out-of-sample forecasting is repeated until
one-step-ahead out-of-sample MAV and GARCH forecasts
of daily returns volatility are produced for each trading day
from January 1, 1980 to September 30, 1987, constituting
the individual out-of-sample forecasts used in the combining
exercise. The most important feature of these forecasts, for
our purposes, is that the MAV and GARCH models used to
produce them employ partially nonoverlapping information
sets. Thus there may be an advantage to using a combined
forecast as opposed to either of the individual forecasts.11

The in-sample observations 1969–1979 are used for two
purposes. First, the training and selection of the EP-NN
and SEP-NN models and choice of the window-width of
the Kernel estimator12 is performed exclusively with the
1969–1979 data using the in-sample forecasts from MAV and
GARCH. Second, the first out-of-sample forecast from all
of the models is made with only this in-sample data. The
MAV and GARCH in-sample 1969–1979 forecasts are used to
form the combining parameter weights for the forecast of the
volatility of the first trading day of 1980 from the OLS, Kernel,
and EP-NN and SEP-NN models.13 The information set is
then updated one day at a time, in a rolling window fashion
just as with the formation of the MAV and GARCH out-of-
sample forecasts, and one-step-aheadout-of-samplecombined
forecasts of all the methods are obtained, January 1, 1980 to
September 30, 1987. These are the forecasts used to evaluate
the performance of the combining models. We must stress
that the training and selection of the EP-NN and SEP-NN
models is carried out once and once only, on the in-sample data

10“Rolling window” model estimation is common in the combining litera-
ture (e.g., [21]).

11In practice, having access to the forecasters’ information sets means any
combination of the forecasts is an inefficient use of the available information.
The application to conditional variance forecasts in our paper should therefore
be viewed as an exercise to compare the combining methods.

12We made use of a normal distribution Kernel and picked the window-
width to minimize the cross-validated Gaussian log-likelihood among all
Kernel estimators that removed evidence of ARCH at the 10% significance
level on the 1969–1979 period. The test performed was the ARCH Lagrange
Multiplier (LM) test at lags 5 and 20. For a description of this test see footnote
14.

13The average combined forecast has weights�0 = 0; �1 = �2 = 0:5 and
hence does not need to be estimated. Once the combining parameter weights
have been estimated—with onlyin-sampleMAV and GARCH forecasts—the
out-of-sampleMAV and GARCH forecasts are used to produce theout-of-
sampleforecast of the volatility of the first trading day of 1980.

1969-1979. Although it is sensible to retrain and re-evaluate
the EP-NN and SEP-NN as we update the data set, this is
computationally too onerous to attempt.

It may be helpful at this point to plot some of the data
and compare the two forecasts which will be used in the
combining exercise, the MAV and GARCH forecasts. We also
plot the SEP-NN forecasts, but these will not be discussed
until Section VIII.

Figs. 1 and 2 plot subsets of the in-sample data, covering
periods 1970 and 1974, respectively. The data plotted are
the squared residuals from (5) and volatility estimates from
the MAV, GARCH, and self-adaptive evolutionary model,
normalized so that their average value is equal to one. Of
course, since the data are strictly positive and quite skewed
(the residuals are approximately distributed as), the points
below one cluster more closely to one. The points (dots) are the
squared residuals, the line of circles is the MAV forecast, the
boxed line is the GARCH forecast, and the line with diamonds
is the SEP-NN forecast.

Fig. 1 plots a year which presented a volatile period May
through July and two less volatile periods on either side.
In such quiet periods the MAV and GARCH forecasts are
virtually overlaid while in volatile periods the two are often
quite different; GARCH reacts much more swiftly than MAV
to changes in volatility. We see much the same pattern in
Fig. 2, though the year 1974 was much more volatile due
in part to the OPEC oil price shock. We see remarkable
divergences of forecasts from MAV and GARCH during
volatile periods, and the very slow adjustment of the MAV
forecast causes it to forecast substantially higher volatility than
GARCH when brief periods of calm present themselves, such
as in August, October, and December 1974. While in some
cases it appears the quick adjustment provided by GARCH
was appropriate, as in June of 1970, the slower adjustment of
MAV provides a better guide through the last half of 1974.
Hence there is hope that combining these two forecasts may
provide us with a better volatility estimate than the use of one
or the other alone.

VII. COMPARING FORECASTS

First, we evaluate the models’ abilities to reproduce broad
features of the data, characterized by summary statistics on
the unconditional moments of the data and a test for residual
autoregressive conditional heteroskedasticity (ARCH) effects
and normality. If a combining forecast method is to be relied
on, then as a minimum it must pass basic specification tests and
do no worse than the forecasts incorporated in the combination.
These summary statistics and specification tests give some
insight on this minimum level of performance.

Next, we compare forecasts on the basis of root mean
squared forecast error (RMSFE) and mean absolute forecast
error (MAFE), in- and out-of-sample. A traditional measure of
the best forecasting method is a simple comparison of RMSFE
and MAFE across competing methods, but this provides no
measure of statistically significant difference in performance.

Finally, we compare combining methods on the basis of
statistical tests of superior performance—encompassing tests
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Fig. 1. This plots a subset of the in-sample data, covering the year 1970. The data plotted are the squared residuals and the volatility estimates from the
MAV, GARCH, and evolutionary models, normalized so that their average value is equal to one. The MAV model volatility estimate is an average of past
squared residuals, and the GARCH(1, 1) volatility estimate is a function of the squared residual and volatility estimate of the last period. The SEP model
volatility estimate is a nonlinear function of both the MAV and GARCH volatility estimates.

on out-of-sample data. This addresses the criticism that ranking
models by RMSFE and MAFE does not provide a measure
of statistically significant difference in performance across
forecasting models.

The importance of these different criteria are inversely
related to their order of presentation. The summary statistics
presented below indicate that all the methods studied attain
a satisfactory minimum of performance. The RMSFE and
MAFE are traditional measures of performance but we will
argue that they provide little information. The encompassing
tests provide a sound statistical basis for model comparison,
and our argument for the superior utility of the EP methods
rests largely on the evidence from the encompassing tests.

A. Summary Statistics

Table I contains summary statistics on the volatility fore-
casts and on the implied standardized return residuals from

our models for stock volatility for the in-sample period April
1, 1969 to December 31, 1979 and the out-of-sample period,
January 1, 1980 to September 30, 1987.

The first column in Table I contains the forecast method
name. Columns 2 and 3 contain the mean and standard
deviation of actual stock returns volatility for the S&P 500
index as well as the mean and standard deviation of the stock
volatility forecasts produced by each method. We expect the
mean of the various volatility forecasts to be similar to the
actual mean and the standard deviation of the forecasts to
be smaller than that of the actual data. The mean should
be identical in-sample for the OLS, EP-NN, and SEP-NN
forecasts, which it is.

Columns 4–6 of Table I (the first three columns of the
standardized returns statistics) contain summary statistics on
the standardized return residuals from the S&P 500 index; i.e.,

When divided by its forecasted standard deviation,
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Fig. 2. Plots a subset of the in-sample data, covering the year 1974. The data plotted are the squared residuals and the volatility estimates from the MAV,
GARCH, and evolutionary model, normalized so that their average value is equal to one. The MAV model variance forecast is an average of past squared
residuals, and the GARCH(1, 1) model variance forecast is function of the squared residual and variance forecast of the last period. The SEP model variance
forecast is a nonlinear function of both the MAV and GARCH variance forecasts.

the return residuals should have a standard deviation of one
(as is the case for the actual or raw return residuals divided
by their sample standard deviation, shown in the first row).
Stock returns distributions are well known to be leptokurtotic
compared to the normal distribution, and we see this in our
raw data, with a kurtosis of 5.749 in-sample instead of three.
As stock volatility-forecasting models are designed to produce
a standardized return residual series which is less leptokurtotic
than the raw series, a reliable method for combining volatility
forecasts should have this property. Table I shows that all
the forecasting and combining methods produce standardized
return residuals which are less skewed and leptokurtotic than
the raw series. The skewness is close to zero and the kurtosis is
close to three, both on the in-sample data, shown in Table I(a),
and on the out-of-sample data, shown in Table I(b).

Column 7 (the fourth column of the standardized returns
statistics) contains the-value from an LM test of the null
hypothesis that the standardized return residuals do not display
ARCH.14 As expected, the raw return residuals display strong
evidence of ARCH with a -value of zero to three decimal
places for both the in-sample and the out-of-sample data. Stock
volatility-forecasting models are designed to remove ARCH
from return residuals and all the forecasting and combining
methods we investigate here succeed in removing significant

14The ARCH LM test is a regression-based test, which takes theR2 from
the regression of squared errors on lagged squared errors, multiplies thisR2 by
the sample size, and compares this to the critical value from a�2 distribution,
degrees of freedom equal to the number of lagged squared errors in the
regression. This test is appropriate under the null of no heteroskedasticity
in the errors, and is performed with 12 lags. The results are qualitatively
identical with 24 lags. For a more detailed discussion of this test for ARCH;
see [3].
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TABLE I
(a) REPORTSSUMMARY STATISTICS ON THE IN-SAMPLE FITTED CONDITIONAL

VARIANCES, �̂2
t

, AND STANDARDIZED RETURNS, �̂t=�̂2t , FOR NEW YORK’S S&P
500 INDEX ON DAILY DATA 1969–1979. (b) REPORTSSUMMARY STATISTICS ON

THE ONE-STEP-AHEAD OUT-OF-SAMPLE FORECASTEDCONDITIONAL

VARIANCES, �̂2
t

, AND STANDARDIZED RETURNS, �̂t=�̂
2

t
, FOR NEW YORK’S

S&P 500 INDEX ON DAILY DATA 1980:1–1987:9. THE MEAN AND

STANDARD DEVIATION (DENOTED “STD” IN THE TABLE) OF THE VARIOUS

VARIANCE FORECASTSARE PRESENTED. FOR THE VARIOUS STANDARDIZED

RETURNS, THE STANDARD DEVIATION, SKEWNESS (DENOTED “SKEW” IN

THE TABLE), KURTOSIS, ARCH LM T EST PROBABILITY VALUE, AND

BERA-JARQUE NORMALITY TEST PROBABILITY VALUE ARE SHOWN

(a)

(b)

evidence of ARCH effects. Further, assuming conditional
normality, as is often done in empirical studies of return
volatility, implies that the standardized return residuals should
be normally distributed. The last column of Table I contains
the -value of the Bera-Jarque normality test on the stan-
dardized return residuals.15 These tests for normality show a
statistically significant deviation from the normal distribution.
This is a widely documented feature of stock return data, not
peculiar to a particular stock index or time period [3].

These summary statistics and tests indicate that all of
the forecasting and combining methods perform reasonably,

15The Bera-Jarque test is an LM test for normality, based on standardized
third and fourth moments [28].

TABLE II
THE ROOT MEAN SQUARED FORECASTERROR AND MEAN ABSOLUTE FORECAST

ERROR FORALL THE MODELS, FORNEW YORK’S S&P 500 INDEX ON DAILY

DATA, IN-SAMPLE 1969:4-1979:12AND OUT-OF-SAMPLE 1980:1-1987:9

though the assumption of conditional normality of the data is
clearly violated. The lack of conditional normality impinges
on the efficiency of the GARCH method, but does not lead
to inconsistent estimation or biased forecasting, and so this
failure is of second-order significance.

B. Summary Measures of Performance

The traditional summary measures of the forecasting meth-
ods is a comparison of RMSFE and MAFE across competing
methods. Although all of our methods were picked with a MSE
criterion method, comparison by mean absolute deviation is
typically considered interesting because researchers often have
little confidence in their choice of criteria to minimize. If we
knew beyond a shadow of a doubt that the data were normally
distributed, there would be no interest in MAFE, but as we
typically do not, alternative measures of goodness of fit to
MSE are provided. Table II contains the root mean squared
forecast error and mean absolute forecast error for each of the
individual models and each of the combining methods for the
in-sample period April 1, 1969 to December 31, 1979, and the
out-of-sample period, January 1, 1980 to September 30, 1987.

Since the parametric modeling approaches provide the great-
est degrees of freedom, the EP methods naturally perform best
in-sample among the parametric models. The nonparametric
Kernel method performs best overall in-sample. It is the
out-of-sample behavior that is informative, for if a method
“over-fits” the data, the out-of-sample performance typically
falls far short of the in-sample performance. What we find
in Table II is no evidence of this problem with the EP-NN
forecasts, from the best, worst, or median in-sample MSE
ranked models, and similarly no such problem with the SEP-
NN. On the out-of-sample data these methods are in the middle
of the pack, with lower RMSFE’s than the MAV method,
the worst performer, and not much higher RMSFE’s than the
best performer GARCH. Similar rankings come from MAFE
measures. We also see no problem of overfitting with the
Kernel method. It is in the middle of the pack by measure
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TABLE III
THE PROBABILITY VALUES OF THE TESTS OFENCOMPASSING ON THEONE-STEP-AHEAD FORECASTEDCONDITIONAL VARIANCES, �̂2t , FOR NEW YORK’S

S&P 500 INDEX ON DAILY DATA 1980–1987. THE TESTS ARE ON �1 PARAMETER IN THE REGRESSION�̂j;t = �0 + �1�̂
2

k;t
+ �t WHERE

�̂j;t = �̂2t � �̂2
j;t

IS MODEL j’ S OUT-OF-SAMPLE FORECAST ERROR AND �̂2
k;t

IS MODEL k’ S OUT-OF-SAMPLE FORECAST. COLUMNS 2–10
(COLUMNS 1–9 OF THE DATA ENTRIES) CONTAIN p-VALUES ASSOCIATED WITH THE t-STATISTICS ON �1 FOR ALL POSSIBLE j � k COMPARISONS

of RMSFE, and it has the best MAFE measure on the
out-of-sample data. Comparison by RMSFE and by MAFE
provides us with no indication of whether any one model is
performing significantly better than the other models, however.
We, therefore, investigate in the next section an additional
means of comparison between forecasting models that allows
for tests of significance: comparison by forecast encompassing.

C. Tests of Forecast Encompassing

Encompassing-in-forecast tests [5], [21] revolve around the
intuition that a Model should be preferred to a Model if
Model can explain what Model cannot explain, without
Model being able to explain what Model cannot explain.
Encompassing-in-forecast tests are designed to provide a sta-
tistically significant test of this characteristic. As such, the test
provides an obvious method for ranking forecasts.

A set of OLS regressions of the out-of-sample forecast
error from one model on the out-of-sample forecast from the
other provide the formal test for encompassing-in-forecast.
Let be Model ’s out-of-sample forecast
error and be Model ’s out-of-sample forecast. The tests
for encompassing involve testing for significance of the
parameter in the regression in (6)

(6)

To test the null hypothesis that neither model encompasses
the other we perform two regressions. Regress the out-of-
sample forecast error from Model on the out-of-sample
forecast from Model , as in (6), regression “ .” Call the
resulting estimate of the coefficient . Call
the estimate that results from the analogous regression.
If is not significant, but is significant, then
we reject the null hypothesis that neither model encompasses
the other in favor of the alternative hypothesis that Model

encompasses Model. We say that Model encompasses
Model if, conversely, is not significant, but
is significant. We fail to reject the null hypothesis that neither
model encompasses the other in forecast if both and

are significant, or if both and are not
significant. Nonoverlapping information sets may lead to both
estimated coefficients being significant, and multicollinearity
may lead to both estimated coefficients being insignificant.

Columns 2–10 of Table III (columns 1–9 of the data entries)
contain -values associated with the heteroskedasticity robust
t-statistics on for all possible comparisons.16 -values
less than 0.01 reveal that the out-of-sample forecast from the
model listed along the top of the table explains, at the 1%
significance level, the out-of-sample forecast error from the
model listed down the left side of the table and thus that the
model listed down the side cannot encompass the model listed
along the top, at the 1% level of significance.

These results provide strong evidence of the superiority of
the SEP-NN method over the competing linear methods. The
SEP-NN out-of-sample forecasts encompass all the competing
linear methods as well as the Kernel method at the 5% level
of significance or better. The SEP-NN coefficient [refer to
(6)] is significant at the 0.1% level in the MAV out-of-sample
forecast error regression, at the 0.1% level in the average out-
of-sample forecast error regression, at the 1.3% level in the
GARCH out-of-sample forecast error regression, at the 1.7%
level in the Kernel out-of-sample forecast error regression, at
the 4.9% level in OLS out-of-sample forecast error regression,
while never having the SEP-NN out-of-sample forecast error
explained at better than the 9.4% level. With respect to the
other ANN combination methods, SEP-NN encompasses EP-
NN(B) and EP-NN(W) at the 5% level as well, but not
the EP-NN(M), suggesting that EP-NN(M) and SEP-NN are
possibly picking up slightly different effects. No other method
does nearly this well. The EP-NN(M) and OLS encompass

16These statistics make use of a modification of the heteroskedasticity-
robust covariance matrix estimator [51] termed “HC3” in [35]. We expect to
have heteroskedastic errors in this regression, so it is important to account for
heteroskedasticity. A simple demonstration of this is as follows. The residual
�t can be rewritten as�t�t where�t is i.i.d., with mean zero and variance one.
The out-of-sample forecast error in predicting�2t (an object we do not actually
observe, but rather estimate) making use of�2t , is �2t � �2t = �2t (�

2

t � 1) so
that the forecast is unbiased,E[�2t � �2t ] = 0, but the forecast error, of even
the optimal forecast, is heteroskedastic.
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only five of the eight alternative models at the 5% level,
and OLS does not encompass these as strongly as does SEP-
NN. EP-NN(W) encompasses four, the Kernel only one, and
GARCH encompasses none. The MAV out-of-sample forecast
is routinely encompassed at the 0.1% level or better, the
average at the 0.5% level or better, neither encompassing a
single other model.

Also of interest is that all of the EP models we looked
at performed well, suggesting that the pseudorandom numbers
used to evolve the networks were not critical in finding a model
which would perform well on out-of-sample criteria. The EP-
NN model which had the best in-sample MSE, EP-NN(B),
did perform somewhat worse than the other ANN models on
the out-of-sample encompassing tests. This suggests that there
may be some problems with overfitting even if the neural
network architecture includes only three nodes as all our EP
models do.

Of further and related interest is the fact that we also looked
at performance statistics for several SEP-NN models, those of
the best evolved network, the median, and worst, though we
report only that of the best. Interestingly, the SEP procedure
showed no symptoms of overfitting in such comparisons, with
each network performing similarly well. This indicates that
our choice of architecture and training algorithm successfully
compromised between functional and parametric flexibility
and the tendency to overfit.17

VIII. D ISCUSSION

As the forecasts from all the models are a function of
only two variables—the MAV and GARCH inputs—we may
plot the three-dimensional surface that maps these inputs into
the combined forecast. Fig. 3(a)–(d) plots the SEP-NN and
OLS combining surfaces estimated in-sample together with the
data points used in this estimation. Fig. 3(a) shows only the
SEP forecasting surface, (b) shows only the OLS forecasting
surface, (c) shows only the data points, and (d) shows all the
surfaces and data in a single plot.

The forecasts are normalized so that the average value
is equal to one, as in Figs. 1 and 2. The curved surface
of diamonds plots the functional relationship—estimated on
the in-sample data April 1969 to December 1979—between
the MAV and GARCH individual forecasts and the SEP-NN
combined forecast. The nonlinearity of the SEP-NN produces
the curved relationship shown in Fig. 3(a) and (d). Similarly,
in Fig. 3(b) and (d), the flat surface of circles shows the OLS
combined forecast. The pillars rising up from the floor of
Fig. 3(c) and (d) indicate actual in-sample data points which
were used in estimating the OLS and EP-NN and SEP-NN
models (the height of the pillars is slightly raised so that
they are easily visible through the surfaces). The flagged
pillars (roughly half of all the data points) are data points
for which the SEP-NN combination produces a smaller error
than does the OLS combination. The unflagged pillars are data
points for which the OLS combination produces a smaller
error than does the SEP-NN. The surfaces in Fig. 3(a) and
(b) indicate the difference in response we can expect from

17Full details of evolved parameters are available from the authors.

the SEP-NN and OLS models for various pairs of GARCH-
MAV forecast inputs, while the pillars in Fig. 3(c) and (d)
provide some indication as to whether or not the differences
in response are relevant for the in-sample period. We can
produce analogous surfaces for the out-of-sample period but
these are less interesting. This is because the models are re-
estimated as we “move” through the data with the rolling
window updating procedure outlined in Section VI, and hence
the surface changes over time in the out-of-sample period.

As displayed in Fig. 3(d), most of the data points occur in
the area where the SEP-NN and OLS forecasting functions
intersect, thus the similarity of the SEP-NN and OLS forecast
summary statistics of Table I(a). We also see, however, that
numerous data points occur away from the curve intersections,
in particular when one or both of the MAV and GARCH
forecasts are large in magnitude. In these areas we get some
intuition for what the SEP-NN combination is doing that is
different than the OLS combination. For instance, the SEP-
NN combination makes very little adjustment in its forecast as
the GARCH falls below the value of the MAV forecast when
they are both large (greater than four) and in fact increases
its forecast when the MAV forecast is close to four and the
GARCH forecast is greater than two but falling. In this area
we are riding up the curve in the SEP-NN surface. We see
such a coincidence of forecasts in Fig. 1 in June of 1970 and
in October 1974 displayed in Fig. 2. Very short periods of
quiet in the midst of high volatility will produce such patterns
with sharply falling GARCH forecasts but little change in the
MAV forecast. The OLS forecast is constrained, because of
its linearity, to treat such periods the same way it treats all
periods, moving up and down primarily with changes in the
GARCH forecast (the slope in the MAV axis is quite small).
It is in these periods, where the SEP-NN forecast reacts little
to changes in the GARCH forecast, that the SEP-NN forecasts
also dominate the OLS forecasts. This is displayed by the
predominance of flagged data points in the back middle of
Fig. 3(c) and (d) where both GARCH and MAV forecasts are
large.

The SEP-NN forecast also reacts quite strongly to large
values of the MAV forecast, in particular if they are associated
with moderate values (3-5) of the GARCH forecast, as seen in
the steeply rising section of the SEP-NN surface in Fig. 3(a)
and (d). In this steeply rising section of the SEP-NN surface,
the back left of Fig. 3(d), the OLS forecasts were as often
associated with smaller errors as were the SEP-NN forecasts,
perhaps indicating that the architecture of the SEP-NN model,
with three nodes, was insufficient to allow it to moderate
reaction to falling GARCH forecasts and stable MAV forecasts
when the MAV forecast was greater than four and the GARCH
forecast was between three and five. An example of this is seen
in Fig. 2 in November of 1974.

IX. CONCLUSIONS

We have described an experiment which evolves single
hidden-layer perceptrons to combine forecasts of stock price
volatility, demonstrating the utility of evolutionary program-
ming in a concrete application. Such forecasting is important
in its own right, in particular in the context of financial
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(a) (b)

(c) (d)

Fig. 3. Plots the SEP-NN and OLS combining surfaces with data points from 1969–1979. The forecasts are normalized so that the average value is equal
to one. The curved surface of diamonds plots the functional relationship between the MAV and GARCH individual forecasts and the SEP-NN forecast. The
flat surface of circles shows the OLS combined forecast. (a) shows only the SEP forecasting surface (diamonds), (b) shows only the OLS forecasting surface
(balloons), (c) shows only the data points (pillars), and (d) shows all the surfaces and data in a single plot with SEP forecasts superior to OLS flagged.

risk management. Evolved ANN models were shown to have
a strong advantage over simple linear models and a non-
parametric Kernel method. A self-adaptive scheme was also
shown to yield some benefits over more simple evolutionary
programming schemes.

Careful examination based on statistical tests revealed that
the evolved networks were significantly superior to linear
combination methods described in the forecast combination
literature. It should be emphasized, however, that the results

presented cover only one example, and it remains to be seen
if they are generally more applicable. It is also hoped that
further research might discover methods of dynamic param-
eter adjustment, so that the evolutionary programs are more
sensitive in monitoring their own performance throughout a
trial. Evolving the nonlinear ANN weights as new information
flows in, rather than just the linear weights as done here, is
not computationally feasible with our large data set, but is a
natural next step to take. This application also does not exhaust
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the pool of applications for which these combining techniques
may be used, in finance and beyond.
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