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Abstract

This paper introduces a computationally-convenient means of combining qualitative forecasts, through use of logit
regression applied to training set data, applicable in dichotomous, polychotomous and ordered polychotomous contexts. It
can be employed in the cases of combining probability forecasts, combining qualitative forecasts which have no associated
probability forecasts, and combining both of these types of forecasts, a case for which no combining method currently exists.
This methodology offers insights into the suitability of equal-weight averaging of probability forecasts, yields an existing
method as a special case, and facilitates associated hypothesis testing. € 1998 Elsevier Science BV.
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1. Introduction

Combining forecasts is an accepted means of
improving forecasts. A quick glance at the combin-
ing literature, however, suggests that it has focused
almost exclusively on combining quantitative fore-
casts, with little attention paid to how combining can
be undertaken in the context of forecasting quali-
tative variables. To the best of cur knowledge,
Feather and Kaylen (1989) and Fan et al. (1996) are
the only work done in this area. In fact, the widely-
cited review article on combined forecasts, by
Clemen (1989), does not even mention combining
qualitative forecasts. Yet, many forecasting problems
are qualitative in nature. Examples include diagnos-
ing a patient, granting a loan, and predicting the
direction of a price change.
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A more careful analysis of the literature reviewed
by Clemen (1989) reveals, however, that the litera-
ture on combining probability forecasts is under
special circumstances relevant to the problem of
combining qualitative forecasts. Indeed, if the train-
ing set data and the qualitative forecasts to be
combined have probability forecasts associated with
them, as they often do, then combined qualitative
forecasts can be produced by using combined prob-
ability forecasts. In general the forecast is chosen to
produce the smallest expected cost, implying that, in
the typical case of all forecast errors carrying equal
costs, the category with the highest estimated prob-
ability is forecast.

Unfortunately, not all qualitative forecasts have
probability forecasts associated with them. For ex-
ample, the training set data may provide only the
information that a doctor diagnosed a patient as ill,
rather than providing an estimated probability that
the patient has the disease in question. We refer to
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such cases as pure qualitative forecasts. The combin-
ing probability literature is not applicable to cases in
which all or some of the available forecasts are pure
qualitative forecasts. Feather and Kaylen (1989) and
Fan et al. (1996) address the case of combining pure
qualitative forecasts; to our knowledge there exists
no literature addressing the problem of combining a
mixture of probability forecasts and pure qualitative
forecasts.

In a sense, though, the focus of the literature on
probability forecasting is apprcpriate. Regardless of
what type of information is available to a researcher
in the training set data, a qualitative forecast can
only be undertaken by estimating probabilities at-
tached to alternative categorics. Furthermore, the
better are these estimated probabilities, in terms of
their bias and variance, the better will be the
qualitative forecasts that result from them. The
methodology we propose in this paper is no excep-
tion to this: training set forecasts, some or all of
which may not be in the forra of probability esti-
mates, are employed via a logit regression to produce
probability estimates for new observations which are
then used to make qualitative forecasts for these new
observations.

The purpose of this paper is to introduce to the
forecasting literature a generic method for combining
qualitative forecasts, based on applying logit regres-
sion to the training set data tc produce weights for
combining. This methodology is applicable to the
case of combining probabilities, to the case of
combining pure qualitative forecasts, to the case of
combining mixtures of probability and pure quali-
tative forecasts, to cases in which there are many
rather than two qualitative categories, and to cases in
which the categories are ordered. The main advan-
tage of this logit regression method compared to
existing methods is that, like the linear regression
methodology of Granger and Ramanathan (1984) for
determining weights to be used for combining quan-
titative forecasts, it is a computationally-attractive
means of producing suitable combinations while
alleviating bias. Further advan:ages are that it facili-
tates testing of related hypotheses and offers perspec-
tive on some existing methods in the literature.
Indeed, the method of Feather and Kaylen (1989) is
seen to be a special case of our combining method.
The method of Fan et al. (19965) is shown later to be

questionable because it requires a very restrictive
assumption, avoided by using our method.

The paper proceeds by looking first at the case of
a binary, or dichotomous, qualitative forecast, inves-
tigating how the logit regression can be applied to
the combining of probability forecasts, the combin-
ing of pure qualitative forecasts and the combining
of mixtures of probability and pure qualitative
forecasts. Next it looks at the polychotomous case in
which there are more than two categories, employing
for this case multinomial logit. Last it looks at how
the logit methodology can be extended to the ordered
polychotomous case by using ordered logit.

2. Dichotomous qualitative forecasts
2.1. Combining probability forecasts

Qualitative forecasts are typically produced by
using a classification procedure such as probit, logit,
linear discriminant analysis, k-nearest neighbor or
goal programming. They also may be produced by
less formal means involving subjective expertise.
Most of the formal procedures produce probability
forecasts associated with their qualitative forecasts,
whereas many of the less formal techniques do not.
We begin our exposition by looking at the case in
which probability forecasts are available so the
problem is simply how best to combine these
probability forecasts. To avoid later confusion, we
note that one of the forecasts to be combined may
have resulted from using logit regression in some
suitable fashion. This is distinct from our use of logit
regression as a combining mechanism.

Existing methods for combining probability fore-
casts range from average-the-probabilities to formal
Bayesian techniques. A good discussion of these
methods can be found in Winkler et al. (1977).
French (1985) and Genest and Zidek (1986) are
good surveys of combining probability forecasts
which refiect individual beliefs. This paper does not
distinguish between forecasts made by experts and
forecasts made by classification methods such as
logit and discriminant analysis.

For expositional reasons we look at the problem of
combining probability forecasts from two techniques,
A and B, and begin with the dichotomous case in



M. Kamstra, P. Keanedy | International Journal of Forecasting 14 (1998) 8§3-93 85

which for convenience we call the two categories
success and failure. We specify that the true prob-
ability of success for the ith observation is equal to a
cumulative distribution F evaluated at an index value
6.. Technique A’s and B’s probatility-of-success
estimates p,, and pyg; for this ith observation, how-
ever produced, are viewed as having associated with
them implicit estimated index values 6,, and 6, so
that

Pa; = F(6,,) and pg, = F(65,).

Existing probability forecast combining methods
combine in probability space so that p,; and p, are
combined to produce (p,,+pg;)/2 for the case of
equal weights, for example. In contrast, our combin-
ing method operates in & space, so that 6,; and 6,
are combined to produce F[(6,; +6;,)/2] for the case
of equal weights, for example. Our method takes the
implicit @ estimates associated with the competing
techniques and combines them in some suitable way
to produce a combined 6 estimate which can be
translated through F into an estimeted probability
and hence a qualitative choice.

Choosing a specific F creates an operational
framework for this methodology. F could be linear,
truncated from below at zero and from above at one,
corresponding to the linear probability model. This
specification was abandoned in empirical work long
ago as being unreasonable. It can create potentially
embarrassing forecasts of certainty, and does not
allow for what many believe are necessary non-
linearities associated with ceilings and floors. Mod-
ern empirical work has adopted an S-shaped curve
for F, the most popular forms being the logistic
function and the cumulative normal distribution. We
adopt the logistic function because of its computa-
tional simplicity, its expositional clarity and the fact
that, as shown below, for a special case it produces
results identical to those of Feather and Kaylen
(1989).

When F is the logit function we have for the
example described above

8

e
b(s =—Q, 1
prob(success) 4o D)
b(fail = .
prob(failure) 1o

For the ith observation the implicit §,, and 8, can
be calculated as the log odds ratio so that 6,,=
In[p,,;/(1—p,;)] and By, =In[ pg, /(1 — pg,)]. Our pro-
posal amounts to combining probability forecasts by
using a logit regression on the training set data to
estimate weights for a weighted average of these two
¢ values.

Our method is similar in spirit to that of Granger
and Ramanathan (1984) who show that the estimated
optimal weighting of Bates and Granger (1969) for
quantitative forecasts can be found by using the
training set data to run a regression of actual value
on forecasted values, constraining the intercept to be
zero and the slope coefficients to sum to one. They
note that removing these constraints allows an
automatic adjustment for possible bias in the in-
dividual forecasts. Unfortunately, the Granger and
Ramanathan technique is not applicable to most
probability forecasting problems. This is because in
probability forecasting the true probability being
forecast is usually not known in the training set, so
that it is not possible to run the regression which is
the heart of their technique. Even if it were possible
to run this regression, their method would not be
suitable because unconstrained regression could
produce forecast probabilities outside the zero-one
interval. A nonlinear combining estimating form
must be adopted to exploit knowledge that the
estimated probabilities should lie between zero and
one.

In place of the linear regression of Granger and
Ramanathan, we employ a logit regression. In par-
ticular, we specify

e#+aeA+/36)B
prob(success) = APPEETRTTY
1

e#+“"A+3"B'

b(fail =
prob(failure) T

Estimation is by maximum likelihood and makes use
of the success/failure information in the training set
data, and € values calculated for each technique as
the log odds ratio using that technique’s estimated
probability. Once the # values have been calculated
estimation is easily performed using any software
with a logit regression routine.

This method is an obvious extension of the
Granger and Ramanathan technique, but we make no
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claims that the resulting probability forecasts are the
best possible. Such optimality would only occur
asymptotically (because of the ronlinearities) and in
the absence of an appeal to a quasi-likelihood
argument, would require that the actual probability
be determined through a logit function by an under-
lying # index of which the log odds ratios of
competing probability forecasts are suitable esti-
mates. Although this may be a more reasonable
approximation to the actual underlying process than
the linear F associated with the current practice of
averaging probabilities, we only claim that this
methodology is a means of combining individual
probability forecasts in a computationally-attractive
manner, while alleviating bias. Allowing the inter-
cept in the exponent to be nonzero and the slopes to
sum to other than unity alleviates bias for the same
reason that it does so in the regression context of
Granger and Ramanathan, and simultaneously
produces weights which can adjust to reflect different
forecast error variances.

An important lesson from the combining literature
is that estimation of suitable weights for combining
probability forecasts (in probability space) often
gives rise to inferior forecasts because these weights
are estimated so poorly. See, for example, Einhom
and Hogarth (1975); Winkler et al. (1977); Kang
(1986); Blattberg and Hoch (1990) and Schmittlein
et al. (1990). DeWispelare et al. (1995) summarize
this literature by noting that ‘the simple average of
point forecasts has tended to co as well, (and often
better) than more complex methods’. If F had been
linear instead of logistic, it is easily seen that
averaging the 6 estimates produces the raw average
of the p estimates: the popular method of combining
by averaging probability estimates is implicitly as-
suming a linear F' This offers useful perspective on
the popular method of combining by averaging
probabilities, information which Winkler (1989)
claims would be of particular value in matching
combining rules to forecasting situations.

Because in general a linear F is unrealistic relative
to a logistic F, a method which exploits the logistic
should be an attractive alternctive to the method of
combining by averaging probabilities. Empirical
results reported later in this paper indicate that using
fixed, equal weights in our logistic combining meth-
od produces results virtually identical to those pro-

duced by a simple average of probability estimates.
Furthermore, when sample sizes are small our logit
combining method suffers from the same problem as
methods using estimated weights for averaging in
probability space: the weights are often estimated
poorly and this causes these methods to be out-
performed by methods using fixed, equal weights.
The main advantage of our logistic combining
method is that it is theoretically more satisfactory
and in large samples provides a simple, effective
means of finding appropriate weights which auto-
matically alleviate bias.

An added advantage of the logit combining meth-
od is that hypothesis testing is easily undertaken,
conditional on the training set data and assuming that
the logit specification is appropriate. The rationale
for this follows that used by Fair and Schiller (1990)
for testing in the context of a linear combination of
quantitative forecasts. For example, examining
whether technique A contributes beyond technique B
in Eq. (1) above can be tested by testing a against
zero using a likelihood ratio test or an asymptotic ¢
test. This feature is very important. Combining is
attractive so long as all the forecasts to be combined
are ‘good’, but existing combining methods for
qualitative forecasting do not have an easy way of
identifying ‘bad’ forecasts. We turn now to another
attractive feature of this combining method: it nests
an existing method as special case.

2.2. Combining pure qualitative forecasts

Let us move now to the case in which the
competing techniques provide only qualitative fore-
casts, without any indication of what probability
estimate has given rise to that forecast. Feather and
Kaylen (1989) provide several examples of such
situations, and analyze a case of forecasting the
direction of hog price changes. To our knowledge
Feather and Kaylen have produced the only combin-
ing methodology for this case in the literature. Their
method begins by subdividing the training set into
groups corresponding to unique combinations of
competing forecasts. For our example there are four
groups:

1. both A and B forecast success;
2. both A and B forecast failure;
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3. A forecasts success and B forecasts failure; and
4. A forecasts failure and B forecasts success.

Feather and Kaylen then assume that given the
group to which an observation belongs the prob-
abilities of success and failure (and other outcomes,
if relevant) are random variables having a joint
Dirichlet distribution. Estimates of these probabilities
are obtained by estimating their expected values
through estimation of the parameters of this Dirichlet
distribution. For each group this produces a com-
bined estimate of the probability of success equal to
the fraction of successes in that group in the training
set. For small samples in which a group may have no
successes or no failures, an uninformative prior is
added to avoid probability forecasts of zero or one.
This prior is equivalent to adding to each group two
additional training set observations, one a success
and one a failure.

A natural extension of the logit methodology
developed earlier is to use as explanatory variables in
the logit specification four dummy variables repre-
senting the four groups defined above, dropping the
intercept to avoid perfect multicollinearity. (We have
dropped the intercept here for expositional con-
venience; in actual applications estimation may be
facilitated by retaining the intercept and dropping
one of the dummies.) This creates the specification

ealD] +8,D,+8,0,+8,D,

prob(success) = | + o211 7802+ 8D+ 5,D;

1
prob(failure} = | & 2101 T Dy 8D T80,

where D, is a dummy variable taking the value one
for observations in group k above and zero other-
wise. Probability forecasts can be rnade by finding
the maximum likelihood estimates of the §, and
substituting them into this logit specification.
Straightforward algebra shows “hat doing so
produces for observations in group & a probability
forecast equal to the fraction of successes in group k&
in the training set. This is exactly the result of
Feather and Kaylen! The modification of the Feather
and Kaylen result produced by adding the unin-
formative prior can be obtained by adding to the
training set data an artificial success and an artificial

failure observation for each group and including
these artificial observations in the logit regression.

One advantage of the logit regression approach to
computing the Feather and Kaylen estimates is that
hypotheses of interest can easily be tested. One may
be interested in whether method B makes any
difference when combined with method A. This
could be tested by using a likelihood ratio test to test
the joint hypothesis that 8,=6, and &§,=8§,. Such
hypothesis tests are of value because they can help
avoid unsuitable forecasts, as noted earlier. They also
can serve as a means of simplifying the combining
method by reducing the number of regressors in the
logit regression. In our example every additional
forecasting method doubles the number of groups in
the Feather and Kaylen method, so an easy means of
moving towards a more parsimonious specification is
attractive.

2.3. Combining using probability forecasts and
pure qualitative forecasts

A third generic combining problem in the quali-
tative forecasting context arises when some of the
individual techniques provide associated probability
estimates but others provide only the qualitative
forecasts. Dawes et al. (1989) provide an example of
such a problem in their discussion of combining
clinical and actuarial judgements regarding medical
diagnoses. To our knowledge there does not exist in
the literature a means of combining probability
forecasts and pure qualitative forecasts. By now it
should be obvious how the logit regression technique
introduced in this paper can be employed in this
context—the regressors in the logit regression must
include both @ estimates and group dummies.

The simplest example occurs when technique A
yields a probability estimate and technique B
produces only a qualitative forecast. In this case
there is one continuous variable 6,, and one dummy
D taking the value one for observations for which B
forecasts success and zero otherwise. The combining
specification is

m+ab,+8D
prob(success) T

e,u+aHA+§D’

1

wtaby~8D"
e

b(fail =
prob(failure) T+
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3. Polychotomous qualitative forecasts
3.1. Combining probability forecasts

We turn now to the case in which there are more
than two categories so that there are more than two
probabilities to be forecast. To simplify exposition,
we consider the case of three probabilities to be
forecast, those associated with success, failure and
no change, and continue to combine the forecasts of
only two techniques, A and B. The fundamental
logic of our approach remains the same, but now we
employ the multinomial logit so that we specify

0,

i

rob(success) = Ps ;= = A, B,
p ( ) S.i 1 eﬁ, ‘3(15, !
e(b'
rob(failure) = Pe; = i=A,B,
P ( ) R 1+ egi e(b'
P (i ng ) = Pni = l i =A,B
rob(no change ; l s Dy
) ! 1+ CH‘. + e(b'

Estimated probabilities pg ., pr, and py, for
technique A correspond to implicit € and ¢ values
given by the log odds ratios 6, =log[ps »/py 4] and
@, =10g[Pp a/Pn a)]- The multinomial logit can be
used to combine these probabilities using the spe-
cification

aR a0, B

eu+aﬁA+,39B + eu+a<bA+,BtﬁB’

b =
prob(success) T

e#+a¢A+BrbB

C;L+aﬁA+ﬁHB + eu+a¢A+/3¢uB’

rob(failure) =
prob(failure) T

]
+ eu +afy+ 6y + eu+ad);\*Bd>B'

prob(no change) = l

Estimation can be undertaken by maximum likeli-
hood using a multinomial logit estimation routine.
Different variants of multinom:al logit routines are
available for different types of multinominal spe-
cifications. A distinguishing feature of this specifica-
tion is that the explanatory variables are different for
each category (i.e. 6 versus ¢ values) and the
parameters the same for each category. Software
packages may not refer to this case as multinomial
logit. In LIMDEP and TSP, for ¢xample, two popular
software packages for estimating qualitative choice

models, this specification is referred to as ‘discrete
choice’ and ‘conditional logit’, respectively, to dis-
tinguish it from the case which they call ‘multino-
mial logit’ in which the set of explanatory variables
is the same for all categories, with parameters
differing across categories.

Forcing the parameters to be identical across
categories is specifying that the averaging weights
are the same across categories. In theory we could
allow the parameters to differ across categories, but
in light of so much evidence in the literature
suggesting that simple specifications (such as equal
weights) are better than more sophisticated specifica-
tions, it seems reasonable to impose this constraint.

This combining methodology is bound to be
plagued by the independence of irrelevant alter-
natives problem (see Kennedy, 1992). In the mul-
tinomial logit model the relative probability of
choosing two alternatives is unaffected by the pres-
ence of additional alternatives, a constraint which is
inappropriate if any of these additional alternatives
are close substitutes. If the forecasts to be combined
are highly correlated, which will often be the case,
this combining technique may not perform well.
Combining should only be done with alternatives
which are not highly correlated. The only way
around this independence of irrelevant alternatives
problem is to use multinomial probit in which the
logit is replaced by a cumulative normal distribution.
In this specification correlations between alternatives
can be accounted for, but at a very high computa-
tional cost requiring specialized software.

3.2. Combining pure qualitative forecasts

Suppose now that the training set data for our
success versus failure versus no change example
provides only the qualitative forecast for each of
techniques A and B, and not the associated probabili-
ty estimate. For this case there are nine possible
combinations of competing forecasts, three different
A forecasts for each of the three different B fore-
casts. Using dummy variables D, for k=1,...9 to
represent each of these combinations we use the

specification
35\D|+"'+59D9
D+ 89Dy | (M Dy* + gDy

ob(success) =
prob( ) l1+e
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ADy e+ AgD)
el ] 99

eSlDl+~->+5ng + eA\‘DI-%”'-‘*'AQD‘,’

b(fail =
prob(failure) I+

prob(no change)
i

- 1 +ea,l),+»--+§909+e/\,D|+----—/\.,Dg,'

Estimation can be undertaken by using maximum
likelihood via a multinomial logit software package.
In this case the explanatory variables have the same
values for all categories and the parameters differ
across categories. This is the case called ‘multino-
mial logit” by LIMDEP and TSP, noted earlier.
Probability forecasts can be made by substituting
estimates of the §, and A, into this logit specification.
Straightforward algebra shows that doing so
produces for observations in group k a probability
forecast equal to the fraction of successes in group k
in the training set, once again exactly the result of
Feather and Kaylen.

3.3. Combining using probability forecasts and
pure qualitative forecasts

Suppose now that some of the forecasting tech-
niques provide associated probability estimates but
others provide only the qualitative forecasts. In this
case the regressors in the multinomial logit regres-
sion must include @ and ¢ estimates as well as group
dummies. Consider the simplest case in which
technique A yields probability estirnates and tech-
nique B produces only qualitative forecasts. Define
Dy as a dummy taking value one when B forecasts
success, otherwise zero, and Dy as & dummy taking
value one when B forecasts failure, otherwise zero.
Then the combining specification is

prob(success)
ep. +aby+8,Dg+ vy Dg

1+ eu+aﬁA+6|DS+'y|DF + e,u.+ad)A+52[)S+72[)F’

prob(failure)

e,u +adp+8,Dg+ v, D

+al, +8,Dg~y,Dg +ad, +6,D+ 052
l+e# ATOPSTNEE L o B AT 02U T V2l F

prob(no change)
1

|+ e# T aOa*aDsENDy | qutad, +8,D5+ 1,Dp

4. Ordered polychotomous forecasts
4.1. Combining probability forecasts

Sometimes it is known that the polychotomous
outcomes are ordered. Bond ratings, for example, are
such that a triple A rating is superior to a double A
rating which in turn is superior to a single A rating,
and so on. For this case we specify that there is an
index @ called, say, creditworthiness, which deter-
mines classification. Suppose there are J categories,
ordered from 1, the lowest, to J, the highest. As ¢
increases and exceeds progressively larger unknown
threshold values a. j=l..J-1, classification
changes from category j to category j-+1. The true
probability that the ith observation belongs to cate-
gory j is given by the integral of a standard logit
from a;_, =6, t0 a;— 6. (For j=1 the lower limit is
minus infinity and for j=J the upper limit is
infinity.) This reflects the thinking behind the ordered
logit model (see Greene, 1993 for details).

We view each forecasting technique as producing
for each observation J—1 measures w,=a;— 6, j=
1,....J — 1. Straightforward algebra shows that these
measures can be estimated as

pt oty
“’;‘::1“[1_ — Tz ]
P P

where p,, is an estimate of the probability that the ith
observation falls in the jth category. Thus technique
A’s estimated probability that the ith observation
belongs to category j is given by the integral of a
standard logit from w,_, ;. to w;,, where the
undefined w,, ., and w,,, are minus infinity and
plus infinity, respectively. The ordered logit combin-
ing method we propose involves suitably weighting
different techniques’ w values. In this case combin-
ing occurs in the space of integral limits rather than
probability or index (#) space.

Let us exposit all this in terms of a simple
example. Suppose there are only three categories,
ordered from lowest to highest as 1=failure, 2=no
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change and 3=success. Then for the ith observation
we have

e“l“"i e“’u
rob(failure) = = ot
prob( )= T et [ 1o
a,—#6; e”‘l-ai
rob(no change) = — — —
P ) T et Tyen
e‘”z. e“’l/
Tltemr 14e”w
1 1
prob(success) =

T+e%™ " 1+e“

Now suppose there are two forecasting techniques A
and B. We specify that for the ith observation

M MA@ AT RO

fail =
prob(failure) I+

T T T @At TRy 8°

Tyt TAWrA T TRW,B

prob(no change) = | T o7 Tavs AT Tawrn
T Y TAD AT TR B
- 1+ e”'|+"’p.“’|m+‘”s’*’|i3’
1
prob(success) =

1+e™ T AW AT Tg@2B "

This can be estimated using an ordered logit software
package with the w, and wy values as explanatory
variables and the 7, and 7, parameters playing the
role of the unknown threshold values.

4.2. Combining pure qualitative forecasts

Suppose now that the training set data for our
success versus failure versus no change example
provides only the qualitative forecast for each of
techniques A and B. and not the associated probabili-
ty estimates. For this case there are nine possible
combinations of competing forzcasts, three different
A forecasts for each of the three different B fore-
casts. Using dummy variables D, for k=1,..9 to
represent each of these combinations we use the
specification

@ D+ + @Dy
prob(failure) = ——————1 IS PG

D+ gDy

rob(no chai =
prob( hange) 1 + e?Pit Dy
e?1Pit oDy
- 1 +eaPit oDy
1
prob(success) =

1 + eq/;‘Dl+-~--+qfqug'

We saw earlier that ordered logit combines prob-
ability forecasts by combining integral limits which
have come from probability estimates. In the case of
pure qualitative forecasts these probability estimates
are unavailable and so it would be surprising if this
ordered logit combining technique could improve
upon multinomial logit. Indeed, it does not. Using
the equations above, we can form the likelihood
function, maximize with respect to the unknown ¢
and ¢ parameters, and make probability forecasts by
substituting estimates of the ¢ and i/ parameters into
this ordered logit specification. Straightforward
algebra shows that doing so produces for observa-
tions in group k a probability forecast for category j
equal to the fraction of j observations in group & in
the training set, once again exactly the result of
Feather and Kaylen.

This case of combining ordered polychotomous
forecasts when only pure qualitative forecasts are
available is addressed by Fan et al. (1996). They
propose three combining methods, one using mul-
tinomial logit, one using linear programming and one
using mixed integer programming. Unfortunately, all
three are based on arbitrarily assigned constants
whose choice affects the combining outcome. Let us
illustrate this using our example of failure versus no
change versus success. Fan et al. assume that each of
the three categories has a latent index associated with
it, and the actual outcome for an observation is
determined by the highest of that observation’s three
index values. Forecasters are viewed as contributing
information on the values of these latent indices. In
particular, those forecasting failure for an observa-
tion are assumed to have a conditional expectation
(conditional on the data) of these indices of H for the
failure index, M for the no-change index and L for
the success index. Those forecasting success are
assumed to have a conditional expectation of L for
the failure index, M for the no-change index and H
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for the success index. And those forecasting no
change are assumed to have a conditional expecta-
tion of (M+L)/2 for the success and the failure
indices and H for the no-change index. Unfortuna-
tely, Fan et al. require knowledge of H, M and L to
be able to use their three combining methods (mul-
tinomial logit, linear programming and mixed integer
programming). In their example, they arbitrarily
choose H, M and L to be 3, 2 and 1. This introduces
additional information into the combining procedure,
namely that, for example, someone forecasting fail-
ure for an observation believes that the conditional
expectation of the latent failure index value for that
observation is three times its success index value and
one-and-a-half times its no-change index value.
There is no justification for this. Our use of ordered
logit circumvents this problem.

4.3. Combining using probability forecasts and
pure qualitative forecasts

Suppose now that some of the forecasting tech-
niques provide associated probability estimates but
others provide only the qualitative forecasts. In this
case the regressors in the ordered logit regression
must include the w values plus group dummies.
Consider the simplest case in which technique A
yields probability estimates and technique B
produces only qualitative forecasts. As earlier, define
Dy as a dummy taking value one when B forecasts
failure otherwise zero, and Dy as a dummy taking
value one when B forecasts success, otherwise zero.
Then the combining specification is

T taw ,+8 Dgty D

b(fail =
prob(failure) T

e A AT Dsty Dp?

Tyt awy s T8, D5+ 1, D

prob(no change) = 1+em* awyp t 805+ v, D
e™ taw o+ 8 Dyt y De
- 1+ eﬂl+awlA+5 Dg+v Dg?
1
prob(success) =

Tyt awyp +8,D¢+ ¥, D
1+ez 2A7T 2Ys 1F

5. Empirical illustration

To illustrate the logit combining tzchnique we use
data on Canadian female labor force participation

from Atkinson et al. (1977). For 263 observations
we have data on a three-category dependent vari-
able—no participation, part-time participation and
full-time participation. We analyse these data first as
a polychotomous qualitative forecasting problem,
and then as a binary qualitative forecasting problem
by collapsing part-time and full-time participation
into a single category. As explanatory variables we
use data on husband’s income, a dummy for pres-
ence or absence of children, and five dummies for
region.

We compare four forecasting methods using these
data to classify observations. Method KNN uses the
k-nearest-neighbor technique, method LDA uses
linear discriminant analysis, method AVG averages
the KNN and LDA probability forecasts, and method
LOG combines the KNN and LDA probability
forecasts using the logit combining technique intro-
duced in this paper. In the polychotomous case we
force the parameters to be identical across categories,
as recommended earlier. Forecasting success is mea-
sured by two popular measures, the error rate (ERR)
and the mean probability score (MPS) of Brier
(1950). Both are estimated using the leaving-one-out
method, i.e. each observation is forecast using all the
other observations as data for the forecasting meth-
od. ERR is calculated as the percentage of the
observations incorrectly forecast. MPS is calculated
as the average over all observations of the square of
one minus the forecasted probability of the event that
actually occurred, plus the sum of the squares of the
forecasted probabilities for all the other events. For
both ERR and MPS small values reflect better
forecasting. The results, reported in Table 1, indicate
that for this example the logit combining method is
superior on all scores.

Likelihood ratio tests were performed to test if
either of the forecasting methods should be ignored.

Table 1
Comparing forecasting methods
Method Polychotomous Binary

ERR MPS ERR MPS
KNN 0.411 0.562 0.217 0.359
LDA 0.548 0.594 0.202 0.326
AVG 0.384 0.568 0.202 0.337
LOG 0.323 0.486 0.198 0.278
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The LR statistics for the null that KNN should be
excluded were 4.95 and 14.63 for the binary and
polychotomous cases, respectively, implying that at
the 1% significance level KNN should be retained
for both. The LR statistics for the null that LDA
should be excluded were 4.58 and 1.44 for the binary
and polychotomous cases, respectively, implying that
at the 1% significance level LDA should be retained
for the binary case but discarded for the polychotom-
ous case.

To lend some perspective to this example, we
summarize results of some ongoing Monte Carlo
work investigating contexts in which LOG is su-
perior to LAVG, the LOG method with fixed, equal
weights which in practice performs very much like
AVG. In this Monte Carlo work the base case is two
forecasters with unbiased log-cdds estimates, both
with errors drawn randomly from a normal dis-
tribution with standard error 0.5. (For true probabili-
ty one-half, a log odds error of 0.5 means a prob-
ability estimation error of 12 percentage points, a
magnitude that drops steadily as the true probability
moves closer to its extremes.) For sample size 263 in
this base case the mean squared error of the prob-
ability estimate for LAVG, which for this case is in
theory the method of choice, is 58% of that of LOG.
This advantage disappears when the standard error of
one method becomes twice that of the other, if a
collective log odds estimation bias of 0.5 is intro-
duced, or some combination of these two events
occurs. This simply reflects the fact that LOG can
benefit by using different combining weights and by
absorbing bias into its constant term.

In general our preliminary Monte Carlo results
show that LAVG, and its counterpart calculated by
averaging the log odds estimates, are remarkably
robust in small sample sizes. Ouly if the sample size
is reasonably large (50 is definizely too small; 263 is
large enough to make possible gains in the circum-
stances described above) can sufficient accuracy be
obtained for LOG to have an advantage for reason-
able error variance differences and bias magnitudes.
The same is true of using the logit method to
combine a probability forecast with a pure qualitative
forecast. If the probability fcrecast is reasonably
good and the sample size is mcdest, no advantage is
gained by using the logit combining method: a
researcher is better off ignoring the extra information

inherent in the pure qualitative forecast. However if
the sample size is reasonably large, or if the prob-
ability forecast is poor (high error variance and/or
substantive bias), the logit method can be superior.
Large sample sizes offset the loss of information
in the logit regression procedure caused by col-
linearity between competing methods’ log odds
ratios, a problem which is worsened by adding more
competing methods. In general, we have found that
with adequate sample size, restricting the logit
combining process to combining the two best in-
dividual methods can produce a small improvement
in forecasting over individual methods, but adding
additional individual methods usually wipes out this
improvement by augmenting the collinearity. This
reflects the general result noted earlier that situations
which cause weights to be poorly estimated should
be avoided. As a last example of this, in the
polychotomous case reported in Table 1, had we not
forced the parameters to be identical across
categories, our logit combining method would not
have outperformed its fixed-weight competition.

6. Conclusion

This paper has shown how logit regression can be
used to combine qualitative forecasts and facilitate
related hypothesis testing. It is similar in spirit to the
regression method of Granger and Ramanathan
(1984) which provides a computationally-convenient
method for finding appropriate weights for combin-
ing while at the same time alleviating bias. Several
results of note have emerged.

1. A new means of combining probability forecasts
was introduced.

2. New light has been shed on the circumstances in
which averaging probability forecasts with equal
weights is an appropriate means of combining.

3. For combining pure qualitative forecasts, in the
dichotomous, polychotomous and ordered poly-
chotomous cases the logit, multinomial logit and
ordered logit combining methods introduced here
produced results identical to those of Feather and
Kaylen (1989), the only existing means of com-
bining pure qualitative forecasts without making
arbitrary assumptions.
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4. The logit regression technique can combine a
mixture of probability forecasts and pure quali-
tative forecasts, something no existing combining
method can do.

5. The logit combining method facilitates related
hypothesis testing.
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