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Abstract

We investigate empirically the role of trading volume (1) in predicting the rela-
tive informativeness of volatility forecasts produced by autoregressive conditional
heteroskedasticity (ARCH) models versus the volatility forecasts derived from
option prices, and (2) in improving volatility forecasts produced by ARCH and
option models and combinations of models. Daily and monthly data are explored.
We find that if trading volume was low during period t−1 relative to the recent
past, ARCH is at least as important as options for forecasting future stock market
volatility. Conversely, if volume was high during period t−1 relative to the recent
past, option-implied volatility is much more important than ARCH for forecast-
ing future volatility. Considering relative trading volume as a proxy for changes
in the set of information available to investors, our findings reveal an important
switching role for trading volume between a volatility forecast that reflects rel-
atively stale information (the historical ARCH estimate) and the option-implied
forward-looking estimate.

JEL Classification: G0

I. Introduction

Market expectations of future return volatility play a crucial role in finance,
as does our understanding of the process by which information is incorporated in
security prices through the trading process. In this article we examine both of
these issues by investigating empirically the role of trading volume (1) in predict-
ing the relative informativeness of volatility forecasts produced by autoregressive
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conditional heteroskedasticity (ARCH) models versus the volatility forecasts de-
rived from option prices, and (2) in improving volatility forecasts produced by
ARCH and option models, and combinations of models.

Previous studies report that trading volume does not linearly Granger-
cause return volatility but may nonlinearly Granger-cause return volatility (e.g., see
Brooks 1998; Heimstra and Jones 1994). The form of the nonlinear relationship
between volume and volatility is, however, ambiguous. We provide a simple model
with predictive power for forecasting return volatility, where volume plays the role of
a switching variable between states in which option-implied volatility is more or less
informative than ARCH for volatility forecasting. In particular, when we interact
lagged volume with option-implied volatility in an augmented ARCH model, we
uncover a significant role for lagged trading volume in forecasting future return
volatility. This finding is made possible because of the novel way we incorporate
trading volume into our functional forms and because, unlike previous studies that
add either trading volume or option-implied volatility (but not both) to ARCH
models, we consider all three factors together.

Previous studies that add option-implied volatility to ARCH do so primar-
ily to investigate the efficiency of option markets, not to improve ARCH forecasts
per se. If option markets are efficient, option prices will contain all available infor-
mation concerning the expected future volatility of underlying prices—including
any information used by ARCH models—and thus volatility forecasts implied by
option prices should encompass volatility forecasts from ARCH models. How-
ever, most studies find that option-implied volatility cannot encompass ARCH in
one-day-ahead volatility forecasting and thus conclude that either the option mar-
ket is not efficient or the option-pricing models employed are misspecified or are
at least problematic for short-term forecasting (e.g., see Day and Lewis 1992).1

We find that option-implied volatility can encompass a simple ARCH model at
one-day and one-month horizons, but when the effects of lagged trading volume
and option-implied volatility are incorporated in an augmented ARCH model, an
implied volatility forecast is encompassed by this broader time-series augmented
information set. Treating relative trading volume as a proxy for changes in the set
of information available to investors,2 our findings reveal an important switching
role for trading volume between a volatility forecast that reflects relatively stale in-
formation (the historical ARCH estimate) and the option-implied forward-looking
estimate. With trading volume low relative to the recent past, ARCH is weighted

1Note that Christensen and Prabhala (1998) and Fleming (1998) find that option-implied volatility can
outperform ARCH at longer horizons (e.g., one-month-ahead forecasts in Christensen and Prabhala 1998)
once certain biases are accounted for (as in Fleming 1998). Day and Lewis (1993) argue that, applied to the
crude oil futures market, options-implied volatility appears to subsume the information contained in other
volatility forecasts at the near-term horizon, though their near term is 32.5 trading days on average, not
1 day.

2We thank the referee for pointing out this interpretation of relative trading volume.
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more heavily in an augmented forecasting model than options for forecasting future
stock market volatility; conversely, with volume high relative to the previous recent
past, option-implied volatility is weighted more heavily than ARCH for forecasting
future volatility.

II. Basic Models and Data

The data we employ in this study range from 1988 to 2003, analyzed at the
daily and monthly frequency. The stock returns come from the S&P 100 index and
option-implied volatilities come from the Chicago Board of Exchange’s (CBOE)
VIX index.3 Model selection is performed on in-sample data from 1988:1 to 1995:9,
and data from 1995:10 to 2003:8 are our holdout sample for out-of-sample forecast
evaluation.4

Define stock returns, Rt, as the arithmetic return based on the daily closing
value of the S&P 100 index, multiplied by 100. Various specification tests on the
daily S&P 100 data after 1987 (which is the period we study because index option
markets were thin before 1988) reveal that expected returns are appropriately mod-
eled with a constant. As a baseline in our own investigations, we therefore employ
the constant expected returns specification.5 The simplest model we consider, the
naive model, has a constant mean and constant variance, forecasting variance as
the average variance from the in-sample period.

ARCH

In the ARCH family of models, volatility forecasts traditionally use only
the history of ε. Lagged ε2 are included to capture volatility clustering; that is,
future volatility is related to lagged squared return innovations. Levels of lagged
ε are also sometimes employed to capture the perception that volatility may be
related in an asymmetric way to lagged return innovations, with sharp drops in
stock prices causing more future volatility than upturns cause. One specification
that nests the popular generalized ARCH (GARCH) model of Bollerslev (1986)

3The CBOE recently redefined its VIX index. We use the original series based on S&P 100 index
prices. See Whaley (2000) for a discussion of the VIX index construction.

4In the holdout sample, we measure realized volatility for volatility forecast evaluation as the squared
residual from a model of the mean and the variance with both constant, where the constants are measured
with data up to but not including the forecast period. There are virtually no differences to using the squared
residual from any other model we discuss later.

5For robustness, we investigated various alternative specifications for the expected return, including
specifications in which expected returns were modeled as a simple AR(1) process, or as a more complicated
seasonal process with dummy variables for January and Monday, plus AR terms as necessary to completely
whiten the in-sample data. Our volatility results did not change appreciably. We therefore report the simple
constant specification in the following analysis.
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and allows asymmetric responses to lagged return shocks is the asymmetric sign-
GARCH model of Glosten, Jagannathan, and Runkle (1993), shown in equations
(1) to (3):

Rt = µ + εt ; εt ∼ (
0, h2

t

)
, (1)

h2
t = α + βh2

t−1 + γ ε2
t−1 + δDt−1ε

2
t−1, (2)

Dt−1 =
{

1 if εt−1 < 0

0 otherwise
. (3)

A Glosten, Jagannathan, and Runkle (1993) model with p lags of ht, q lags of ε2
t ,

and r lags of Dtε
2
t is labeled GJR(p, q, r). Such a model excluding the asymmetric

volatility term Dtε
2
t is labeled GARCH(p, q). For simplicity, models in the ARCH

family are referred to simply as ARCH when there is no ambiguity.
In this article, the ARCH model we use is the lowest order model that

removed evidence of residual autocorrelation, ARCH, and sign-ARCH effects.
With our data and period, the very simple GARCH(1,1) was sufficient and is
ranked best by the Schwarz information criteria.6 The GARCH(1,1) model uses
one lag each of h2 and ε2

t in equation (2). The models we rank are all of the form
in equations (1) to (3), with as many as two lags of h2, ε2, and the asymmetric
volatility term. Details on the full set of various alternative models estimated can
be found at www.markkamstra.com.

We report parameter estimates for the GARCH(1,1) model, estimated with
maximum likelihood assuming normality, in section IV, along with comparisons
with other models. We present standard errors based on Bollerslev and Wooldridge
(1992), which are robust to nonnormality. Results from various in-sample and
out-of-sample diagnostic tests and performance evaluations are also presented in
sections IV and V.

Option-Implied Volatility

We use the CBOE VIX index to measure option-implied volatility. There
is a maturity mismatch when using the VIX for volatility forecasting over hori-
zons less than one month, given the VIX is designed to forecast volatility over a

6The sign-ARCH test probes for asymmetric volatility increases from negative shocks to the returns
process. See Engle and Ng (1993) for details on the sign-ARCH tests. The Schwarz information criterion
is widely used in the literature (e.g., Nelson 1991 uses Schwarz to select exponential GARCH (EGARCH)
models). As noted by Nelson (1991), the asymptotic properties of this criterion are unknown in the context
of selecting ARCH models; hence, we might also rely on the principle of parsimony among models that do
not fail common specification tests to pick the favored model. This would lead us again to the GARCH(1,1)
model.
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22-business-day period (one calendar month, approximately). Although the VIX
volatility forecast can be interpreted as the average volatility over the coming month,
and hence a measure of the volatility over the coming day, at least two outcomes
are likely. One, the VIX can be expected to be less efficient at forecasting volatil-
ity one day rather than one month ahead. Two, forecast errors from the VIX will
be correlated over the month-long period that the VIX forecasts overlap. As a re-
sult, we consider the performance of our volatility forecasting techniques over both
daily and monthly periods. Also, when comparing the VIX with other forecasts of
volatility on daily data, we employ econometric techniques designed to be robust
to a 22-day moving average forecast error process.

Volume

The final variable we consider is trading volume at the New York Stock
Exchange (NYSE). Because our objective is to forecast volatility, we are interested
in lagged volume, that is, Volumet−1, or some function of Volumet−1. Because one
purpose of our investigation is to determine whether ARCH and options behave
differently on high- versus low-volume days, we first consider the high/low volume
indicator variable V t−1, where:

Vt−1 =




1 if Volumet−1 ≥ 1

(n − 1)

n∑
i=2

Volumet−i

0 otherwise

. (4)

We set n = 5 so that V t−1 equals 1 if lagged volume is above its one-week lagged
moving average (in the case of daily data), and 0 otherwise. We find no qualita-
tive difference when considering other lag lengths, including a one-month lagged
moving average instead of one week for daily data. We form this volume variable
relative to the past five months of data for the monthly forecasting exercises.

III. Combining Forecasts

Combining Model and Results

Perhaps the most obvious way to isolate and compare ARCH, option, and
volume effects is to estimate a simple linear combination of the ARCH forecasts
and option-implied forecasts, along with our high/low volume-switching variable.
Combining has a long tradition in the forecasting literature (e.g., see Clemens
1989). We first use equations (1) to (3) and returns information from period t−1 to
calculate an ARCH volatility forecast for period t , and we denote this conditional
volatility forecast ĥ2

t . We next use the VIX implied volatility estimate (formed
in period t−1), denoted Ŝ2

t . We then calculate our volume variable, V t−1, from
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TABLE 1. Parameter Estimates from the Combining Regression.

σ̂ 2
t = 0.009 − 0.034Vt−1 + 0.364ĥ2

t − 0.74Vt−1ĥ2
t + 0.309Ŝ2

t + 0.406Vt−1 Ŝ2
t

{.100} {0.228} {1.54} {−2.21∗∗} {2.38∗∗} {1.89∗}
(0.016) (0.147) (0.237) (0.335) (0.13) (0.215)

Note: The variables are defined as follows:
σ̂ 2

t = stock market return volatility on period t ;
V t−1 = indicator variable indicating that trading volume is higher than average over the past week;

ĥ2
t = forecasted volatility from an autrogressive conditional heteroskedasticity (ARCH) model,

conditional on t−1 information; and
Ŝ2

t = forecasted volatility from option prices, conditional on t−1 information.

Log likelihood = −2269.69, Bayesian information criterion = 4600.026. The jointly estimated mean
parameter from equation (1) is µ = 0.043, with standard error of 0.016. There is little or no evidence of
autocorrelation, ARCH or sign-ARCH. The R2 is 0, as the mean is modeled with only a constant term.
A more parsimonious version of this model is presented in section IV, and more detailed diagnostics are
presented there. Bollerslev-Wooldridge (1992) robust two-sided t-tests are in brackets, and robust standard
errors are in parentheses.

∗∗∗Significant at the 1% level, two-tailed test.
∗∗Significant at the 5% level, two-tailed test.
∗Significant at the 10% level, two-tailed test.

equation (4). Finally, we combine these three variables in a joint mean-variance
maximum likelihood regression to obtain our combined volatility forecast, σ̂ 2

t .

σ̂ 2
τ = α0 + α1Vt−1 + φARCH,0ĥ2

t−1 + φARCH,1Vt−1σ̂
2
t−1 + φOption,0 Ŝ2

t−1

+ φOption,1Vt−1 Ŝ2
t−1, (5)

where V t−1 is defined in equation (4). We report parameter estimates from the
combining regression equation (5) in Table 1. The results in Table 1 are daily for
January 1988 to September 1995, for a total of 1,959 observations.

From the theoretical studies on trading volume cited in the introduction and
discussed more fully later (e.g., Admati and Pfleiderer 1988), we expect market
prices to be more informative during high-volume periods and thus would expect
option-implied volatility, which is based on market prices, to forecast volatility more
accurately, whereas ARCH models based on a long history of lagged prices would
not necessarily prove helpful in forecasting. The parameter estimates we find are
consistent with this expectation. When volume is light relative to the past week, the
weights assigned to the ARCH forecast and the option-implied forecast are roughly
equal, with coefficient estimates of 0.309 on the option-implied term and 0.364 on
the ARCH term (although the ARCH coefficient estimate is not significant at the
10% level). However, when volume is heavy relative to the past week, the weight on
the option-implied forecast more than doubles to 0.715 (the sum of the coefficient
estimates on Ŝ2

t and Vt−1 Ŝ2
t ) and the weight on the ARCH forecast now becomes

negative, −0.376 (the sum of the coefficient estimates on ĥ2
t and Vt−1ĥ2

t ).
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We conduct several tests to check the robustness of this result. First, we
investigate different definitions of volume (e.g., equation (4) based on a one-month
lag instead of a one-week lag), different data series of option-implied volatility and
returns (based on the S&P 500), and different definitions of ARCH and the mean
equation (e.g., different models, different lag lengths, etc.). The resulting regression
coefficient estimates change somewhat from specification to specification, but the
basic finding remains: option-implied volatility dominates ARCH in high-volume
states, and ARCH matches or dominates option-implied volatility in low-volume
states.

Second, we separate our data into various subsamples and repeat the regres-
sion. Again, coefficient estimates change somewhat from subperiod to subperiod,
but the key result is qualitatively robust.

Third, instead of using the variance of the residual from equation (1) as the
dependent variable in the combining regression, we define the dependent variable
as option-implied volatility from day t . (Thus, we use ARCH, volume, and option-
implied volatility on day t−1 to forecast option-implied volatility on day t .) Here
again we find our familiar result: option-implied volatility is a better forecaster of
future volatility relative to ARCH when volume is high, no matter how the term
“volatility” is defined. Regardless of the specification for volatility, this core result
is robust. We also considered conducting various option-based tests on our volatility
forecasts, including tests for pricing/hedging effectiveness, but we did not do so
because pricing/hedging effectiveness testing cannot be legitimately undertaken on
the volume-ARCH-option combinations we study given the menu of option pricing
models currently in existence.

Discussion

As stated in the introduction, we are not attempting to test market effi-
ciency in our study. It is, however, interesting to note that on days that have high
volume relative to the past week, days we expect to exhibit changes in the investor
information set, option-implied volatility dominates ARCH. Thus, using the yard-
stick suggested by other authors, the market may indeed be efficient when enough
information is flowing into the market (assuming volume is a good proxy for in-
formation flow, as is frequently assumed; e.g., Admati and Pfleiderer 1988). The
failure of option-implied volatility to dominate ARCH on low-volume days might
suggest that if the market is indeed inefficient, it may only be so when there is
comparatively little information flowing. Alternatively, our results could be inter-
preted to reveal that the Black and Scholes (1973) model is misspecified in some
way that is most clearly seen on low-volume days and that the market is always
efficient.

There appear to be at least two possible (not necessarily exclusive) expla-
nations for our finding that option-implied volatility provides a better volatility
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forecast relative to ARCH following high-volume days: (1) the informativeness of
the ARCH volatility forecast declines in high-volume states, and/or (2) the infor-
mativeness of option-implied volatility increases in high-volume states.

We investigate whether there is any change in average volatility following
high- versus low-volume days as this could lead ARCH to underforecast future
volatility following high-volume days and thus help explain why ARCH does worse
relative to options following high-volume days. To examine this possibility, we
compare average squared errors from equation (1) and average volatility forecasts
from our ARCH and option-implied models on day t when volume was high versus
low on day t−1. We find, based on our in-sample data 1988 to September 1995, that
when volume was high on day t−1, the average day t squared error is 0.724, and
when volume was low on day t−1, it is 0.721. Moreover, when volume was high
on day t−1, the average day t deviation between the ARCH and option-implied
forecasts shrinks relative to the deviation following relatively low-volume periods.
In other words, squared pricing errors are almost identical following high- and
low-volume days, and the ARCH model matches option-implied volatility better
on days following high volume. The close match of average squared pricing errors
on high- and low-volume days is revealed in the insignificant intercepts in the
combining regression in Table 1. This suggests the ARCH versus options effect is
not coming from average volatility levels, and thus any explanation of our results
is more likely to rest on intertemporal correlations between forecasted and realized
volatility.

To investigate correlation effects, we compute the simple correlation be-
tween realized volatility at time t , as measured by the time t squared return in-
novation, and the ARCH (option-implied) volatility forecast at time t−1 based
on our in-sample data, January 1988 to September 1995. This correlation equals
24.8% (26.0%) when volume is low on day t−1 and is 15.8% (23.1%) when
volume is high on day t−1. On the full sample, January 1988 to August 2003,
we observe a similar pattern, with the correlation between realized volatility at
time t and the ARCH (option-implied) volatility forecast at time t−1 equaling
33.4% (34.5%) when volume is low on day t−1 and 26.8% (35.4%) when vol-
ume on day t−1 is high. In other words, ARCH volatility works best following
a low-volume period, and option-implied volatility is roughly as good follow-
ing high- or low-volume periods (relative to recent volume levels). It therefore
seems likely that the ARCH versus options effect is at least partially driven by
ARCH doing worse following high-volume days versus low-volume days and
option-implied volatility doing as well on either high- or low-volume days. The
conditional analysis and formal tests that follow suggest further that the benefit
derived from the time-series information embedded in ARCH and volume come
mainly from improving forecasts following low-volume states, with the weight on
time-series information changing to zero or negative values following high-volume
periods.
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IV. Augmented ARCH

Forecast combining was appropriate in the previous section because our
purpose was to reveal the basic ARCH-volume-option relation. Forecast combining
is also a useful tool when the econometrician possesses the forecasts produced by
various models but not the information sets used to produce the forecasts. However,
we do possess the information set on which at least the ARCH forecasts are based;
thus, to produce optimal volatility forecasts, we should ideally add option and
volume information to the ARCH model directly and estimate an augmented ARCH
mega-model. We therefore investigate augmented ARCH models in this section.

Model

The augmented ARCH model we employ is given in (6), in which Rt is the
daily arithmetic stock return (multiplied by 100) and S2

t is option-implied return
variance.

Rt = µ + εt ; εt ∼ (
0, σ 2

t

)
(6)

σ 2
t = α0 + α1Vt−1 + β0σ

2
t−1 + β1Vt−1σ

2
t−1 + γ ε2

t−1

+ φOption ,0S2
t−1 + φOption,1Vt−1S2

t−1, (7)

where V t−1 is defined in equation (4), and equations (6) and (7) are estimated
jointly under maximum likelihood with n = 5, as are several restricted and extended
versions of (6) and (7). Results are reported next.

To understand better the effects of adding lagged volume and implied
volatilities to ARCH, we investigate many possible combinations and permuta-
tions within our model, including: each variable alone, each possible combination,
variables interacting with each other, and so forth. We also expand our model to
investigate a variety of different functional forms for the conditional volatility, in-
cluding variables, and groups of variables, added and interacted nonlinearly. Table
2 presents daily data in-sample estimation results for a small collection of models,
which reveal the most interesting information concerning the effects of volume and
implied volatility, for daily data from January 1988 to September 1995. Summary
statistics on daily and monthly data for these models follow in Table 3, Panels A and
B. In all cases our core result—that options provide better forecasts relative to ARCH
on high-volume days than on low-volume days—remains qualitatively robust.

Parameter Estimates

In Panel A of Table 2 we report parameter estimates (with Bollerslev-
Wooldridge robust standard errors in parentheses) for the most interesting
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specifications contained within equations (5) through (7). In Panel B we report
common diagnostics for each model. These diagnostics include: the model log
likelihood; the Bayesian information criterion (BIC); the p-value from a test for
residual autocorrelation (Wald AR, a χ2 Wald test using 5 lags of the residual
from the mean equation); the p-value from a traditional Ljung-Box (1978) test for
symmetric ARCH at 24 lags; and the p-values from an Engle-Ng (1993) sign bias
test, negative sign bias test, positive sign bias test, and joint sign bias test—all at 5
lags—for the presence of asymmetric ARCH effects.

We begin our analysis of Table 2 by considering the results from the basic
GARCH(1,1) specification, as reported in column 3 (labeled ARCH). Note from
Panel A, column 3 that all the parameter estimates from the ARCH model are
of the expected sign and magnitude and, from Panel B, that the model passes all
standard specification tests at conventional significance levels (e.g., there are no
p-values below .050 in Panel B, column 2). Note in particular from Panel A that

TABLE 2. Estimation Results and Diagnostics for Volatility Models Based on Equations (5)
Through (7) and Daily Data.

Options ARCH Combining
Parameter Naive Only Model Model Full MLE

Panel A. Parameter Estimates (Robust Standard Error)

µ 0.047∗∗ 0.042∗∗ 0.047∗∗∗ 0.043∗∗∗ 0.045∗∗∗

(0.019) (0.016) (0.016) (0.016) (0.016)
α0 0.723∗∗∗ 0.010 0.002 0.019 0.032∗∗∗

(0.049) (0.050) (0.001) (0.053) (0.010)
β0 0.980∗∗∗ 0.842∗∗∗

(0.008) (0.114)
β1 −1.31∗∗∗

(0.336)
γ 0.016∗∗ −0.016

(0.007) (0.014)
φOption,0 0.519∗∗∗ 0.307∗∗ 0.049

(0.059) (0.130) (0.055)
φOption,1 0.411∗ 0.709∗∗∗

(0.212) (0.184)
φARCH,0 0.350

(0.222)
φARCH,1 −0.706∗∗

(0.330)

Panel B. Diagnostics

Log likelihood −2461.41 −2274.27 −2311.62 −2269.75 −2269.71
BIC 4945.565 4578.857 4661.135 4592.553 4600.070
Wald AR test 0.119 0.133 0.124 0.095 0.071
LM ARCH test 0.000 0.965 0.980 0.968 0.965
Sign test 0.529 0.609 0.521 0.639 0.639
Neg. sign test 0.000 0.851 0.446 0.792 0.801

(Continued)
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TABLE 2. Continued.

Options ARCH Combining
Parameter Naive Only Model Model Full MLE

Pos. sign test 0.000 0.063 0.059 0.042 0.100
Joint sign test 0.000 0.612 0.224 0.485 0.555

Note: Panel A presents coefficient estimates for the variance forecasting models.
σ̂ 2

t = α0 + α1Vt−1 + φARCH,0ĥ2
t−1 + φARCH,1Vt−1σ̂

2
t−1 + φOption,0 Ŝ2

t−1 + φOption,1Vt−1 Ŝ2
t−1

or
σ̂ 2

t = α0 + α1Vt−1 + β0σ̂
2
t−1 + β1Vt−1σ̂

2
t−1 + γ ε̂2

t−1 + φOption,0 Ŝ2
t−1 + φOption,1Vt−1 Ŝ2

t−1,
where

σ̂ 2
t = stock market return volatility on period t;

Vt−1 = indicator variable indicating that trading volume is higher than average over the past week;
ĥ2

t = forecasted volatility from an ARCH model, conditional on t−1 information;
Ŝ2

t = forecasted volatility from option prices, conditional on t−1 information;
Rt = µ + εt ; εt ∼ (0, σ 2

t ), where Rt is the daily arithmetic stock return (multiplied by 100); and
ε̂t = Rt − µ̂, where µ̂ is the estimate of the mean return from the naive model.

Panel B reports common diagnostics for each model. These diagnostics include: the model log likelihood,
the Bayesian information criterion (BIC), the p-value from a test for residual autocorrelation (Wald AR =
a χ2 Wald test on 5 lags of the residual in the mean equation), the p-value from a traditional Ljung-Box
(1978) test for symmetric ARCH at 24 lags, and the p-values from an Engle-Ng (1993) sign bias test,
negative sign bias test, positive sign bias test, and joint sign bias test—all at 5 lags—for the presence of
asymmetric ARCH effects.

∗∗∗Significant at the 1% level, two-tailed test.
∗∗Significant at the 5% level, two-tailed test.
∗Significant at the 10% level, two-tailed test.

the parameter on lagged conditional volatility, β0, is close to unity, which reveals
the highly persistent nature of stock return volatility.

In column 1 (naive) of Table 2 we report results from a constant mean and
constant variance model, forecasting next-period variance as the average variance
from the in-sample period. This model displays gross evidence of misspecification
with very strong residual ARCH and sign-ARCH effects, though no evidence of
autocorrelation.

In column 2 (options only) of Table 2 we report results from option-implied
volatility alone, that is, results from equations (6) and (7) estimated with all parame-
ters set to zero except for the intercepts and φOption,0. Note in Panel B, column 2 that
the log likelihood from option-implied volatility alone exceeds the log likelihood
from ARCH in column 3. Also note in Panel B that option-implied volatility passes
all of the ARCH tests at the 5% significance level.

In column 4 (combining model) of Table 2 we report results from the com-
bining regression model of equation (5), constraining the volatility intercept dummy
variable V t−1 to have a coefficient estimate of zero. This model also removes most
evidence of sign-ARCH effects and appears similar to the combining model that
includes the intercept volume dummy variable. The log likelihood is improved rela-
tive to either the ARCH or option-implied model alone, although the BIC criterion
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favors the simple option-implied volatility model over the more highly parameter-
ized combining model.

In column 5 (MLE (maximum likelihood estimate)) of Table 2 we report
results from adding option-implied volatility and our high/low volume indicator
variable to the standard ARCH model, a representative but parsimonious model of
the set of models that could be constructed from interacting the volume variable
with the various ARCH variables and the option-implied volatility variable. Unre-
ported results reveal that, either alone or when added to a standard ARCH model,
lagged volume has no power to predict volatility. From this, one might be tempted
to conclude, as previous researchers conclude, that lagged volume has no power to
forecast future volatility once the effects of lagged return innovations have been
accounted for. However, such a conclusion would be premature. It would be more
accurate to argue that although volume cannot by itself forecast volatility, it does
play an important regime-switching role, interacting with other variables in the
model, as we have already seen. Here, we observe that on high-volume days, the
weight on option-implied volatility increases and the weight on the lagged condi-
tional variance decreases (i.e., β1 < 0 and φOption,1 > 0). In other words, the full MLE
model from Table 2 confirms our findings from the simple combining exercise we
reported in Table 1. The results from this model are, however, even more dramatic
than those from the simple combining exercise. The weight on the option-implied
variable is effectively 0 in the low volume state, equal to 0.049 and statistically in-
significant, and the weight on the lagged conditional variance flips to nearly −0.5
in the high volume state (relative to the last weeks’ average volume). Compared to
the combining model reported in Table 2, however, the log likelihood and BIC give
little reason to prefer the full MLE model over the combining model on daily data.
As presented next, out-of-sample forecast performance confirms this for daily data
but shows advantage to the full MLE model for monthly forecast horizons.

Results for the daily data model estimations for the full sample, 1988 to
2003, as well as for monthly data, 1988 to 1995 and the full sample, can be found
at www.markkamstra.com. These results are qualitatively identical to the results
discussed previously.

Summary Statistics

In Table 3, Panels A and B, we present summary statistics on all of the
models in Table 2 for daily and monthly data. In the first row in Table 3 (raw
data), we report statistics for the S&P 100 returns (recall that returns are arithmetic
and multiplied by 100). The row labeled ARCH is for the basic GARCH(1,1)
model in equations (1) to (3). Option signifies variance defined as lagged option-
implied volatility, that is, equations (6) and (7) with all parameters zero except
µ, α0, and φOption,0, with the implied volatility suitably rescaled for the forecast
horizon. The combining model is a modified version of the model presented in
section III, in which the volume dummy variable V t−1 is omitted, as in column 4 of
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TABLE 3. Summary Statistics.

Panel A. Daily Data: January 1, 1988, to September 29, 1995

Fitted Variance Standardized Returns

Method Mean Std Skew Kurtosis-3 RMSE Std Skew Kurtosis-3

Raw data 0.723 2.161 13.660 275.757 2.991 1.000 −0.499 6.963
ARCH 0.723 0.456 1.855 4.130 2.725 1.001 −0.573 5.397
Option 0.715 0.510 2.396 8.092 2.503 1.000 −0.495 4.278
Combining 0.712 0.512 2.615 11.006 2.464 1.000 −0.490 4.084
Full MLE 0.707 0.507 2.774 11.709 2.470 1.000 −0.470 4.113

Panel B. Monthly Data: January 1988 to September 1995

Fitted Variance Standardized Returns

Method Mean Std Skew Kurtosis-3 RMSE Std Skew Kurtosis-3

Raw data 12.353 20.892 2.637 6.764 1.691 1.000 −0.051 0.944
ARCH 12.276 5.479 0.687 −0.340 1.583 1.007 −0.293 0.566
Option 13.468 11.181 3.012 12.220 1.514 1.005 −0.245 0.364
Combining 13.117 10.041 2.459 7.507 1.448 1.005 −0.157 0.151
Full MLE 12.931 10.810 2.388 7.165 1.260 1.005 0.027 −0.382

Panel C. Daily Data: October 2, 1995 to August 8, 2003

Variance Forecast Standardized Returns

Method Mean Std Skew Kurtosis-3 RMSE Std Skew Kurtosis-3

Raw data 1.737 3.609 5.986 53.673 3.916 1.000 0.003 2.324
Naive 0.917 0.177 0.315 −1.184 4.006 1.359 −0.069 2.505
ARCH 1.638 1.087 1.609 3.250 2.177 1.061 −0.340 1.710
Option 1.372 0.814 1.638 3.214 2.098 1.099 −0.194 0.977
Combining 1.397 0.856 1.664 3.283 2.118 1.097 −0.189 1.063
Full MLE 1.363 0.815 1.655 3.318 2.148 1.107 −0.195 1.029

Panel D. Monthly Data: October 1995 to July 2003

Variance Forecast Standardized Returns

Method Mean Std Skew Kurtosis-3 RMSE Std Skew Kurtosis-3

Raw data 25.947 32.242 2.211 5.093 2.150 1.000 −0.049 −0.453
Naive 15.063 2.873 0.275 −1.471 2.268 1.315 −0.010 −0.412
ARCH 20.892 12.747 0.952 1.046 2.000 1.217 0.013 −0.206
Option 23.262 13.901 1.650 3.303 1.466 1.107 −0.247 −0.619
Combining 22.541 14.862 1.752 4.513 1.993 1.185 −0.411 −0.100
Full MLE 23.642 17.174 1.903 5.162 1.525 1.134 −0.172 −0.704

Table 2. The last row of each panel reports results from the full MLE, which is the
maximum likelihood combination of ARCH, volume, and options obtained by es-
timating equations (6) and (7), including interaction terms between volume and the
option-implied volatility, and volume and the lagged conditional variance, as in
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column 5 of Table 2. For in-sample returns, the naive model yields a constant vari-
ance forecast and standardized returns equal to the raw data; therefore, results based
on that model are not reported.

We consider now the properties of the fitted variance and standardized
in-sample returns based on the summary statistics presented in Table 3, Panels A
and B. The variance (squared error) forecasts for daily and monthly data all have
a mean close to the average squared error—the raw data (the raw option-implied
volatility is biased but our estimate corrects this bias by estimating an intercept
and slope term, α0 and φOption,0). All models produce forecasts that are less volatile
than the actual squared error, as well as generally less skewed and kurtotic. The root
mean squared error (RMSE) column favors the more highly parameterized models.
Of particular interest in Table 3, Panels A and B, are results from the columns on
standardized returns, that is, ε̂t/σ̂t . The combining and the full MLE models deliver
the lowest kurtosis, and basic ARCH removes the least kurtosis.

V. Forecasts

A model’s ability to forecast future volatility is the most important feature
to consider in the present context. To measure realized volatility, we employ the
squared residual from the naive model of the mean return. There are virtually no
differences to using the residual from any of the other models. We find that the
interaction of volume with option-implied and ARCH forecasts produces volatility
forecasts that encompass both the option-implied and ARCH forecasts themselves,
with the cleanest results being for the monthly data, the forecast horizon for which
the option-implied forecasts are designed.

To explore out-of-sample forecasting, we first use data from January 4,
1988, through September 29, 1995, to estimate model parameters. We then use these
parameters with the data from January 1988 through September 1995 to produce
for October 2, 1995 (the next business day that markets were open) a one-step-
ahead out-of-sample forecast of both the level and volatility of the expected return
innovation (i.e., both ε̂t and ĥt ). Next, we update our information set by one period,
using data from January 4, 1988, through to October 2, 1995, to produce for October
3, 1995, a one-step-ahead out-of-sample forecast of both the level and volatility of
the expected return innovation. This process continues until we obtain one-step-
ahead out-of-sample forecasts for October 2, 1995, through August 8, 2003. Tests
based on these one-step-ahead out-of-sample forecasts are reported next.

Table 3, Panels C and D present out-of-sample statistics analogous to those
presented in Table 3, Panels A and B, but in addition we now include forecasts from
the naive model. Most of the models produce out-of-sample normalized returns
that are less kurtotic than the raw data for the daily data forecast horizon, except
for the naive model. For the monthly forecast horizon there is no excess kurtosis,
even for the raw data. All of the models produce one-step-ahead forecasts that are
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biased downward, so that the normalized returns are too volatile. For both daily and
monthly horizons, the option-implied forecasts yield the smallest mean squared
(forecast) error. We would expect to observe much lower out-of-sample RMSE for
the more complex forecasting techniques relative to that of the naive model, and
this is true. The RMSE of the naive model is nearly twice that of all the models on
daily data, and as much as 50% larger than the best model on monthly data.

To more carefully evaluate the out-of-sample forecasting performance of
each model relative to the other models, we conduct forecast-encompassing tests
similar to Chong and Hendry (1986), Fair and Shiller (1990), and Day and Lewis
(1992, 1993). To examine forecast encompassing, we estimate a single bivariate
regression with both forecasts as regressors and test for the significance of the
parameter estimates in equation (8):

ε̂2
t = α + β j ĥt , j + βi ĥt ,i + νt , (8)

in which (ε̂2
t ) is the naive model forecast error,7 ĥt , j is the model j forecast, ĥt ,i

is the model i forecast, and ν is a random error. Multicollinearity can lead to
both β coefficient estimates being insignificant when equation (8) is estimated,
whereas sufficiently nonoverlapping information sets can lead to both estimated β

coefficients being significant.
The results of estimating equation (8) parameters and standard errors are

reported in Table 4, Panels A and B. The estimation of equation (8) is based on
Hansen’s (1982) generalized method of moments (GMM) and Newey and West’s
(1987) heteroskedasticity- and autocorrelation-consistent (HAC) covariances, em-
ploying 1 lag of regressors as instruments and 22 lags to construct the HAC standard
errors for daily data (to correct for the overlapping nature of the option-implied
forecast errors). The R2 statistics are based on simple ordinary least squares.

The first block of results in the table is single regressor models for which
the out-of-sample squared residuals are regressed one at a time on each model we
consider. The remaining blocks of results detail pairwise regressions described by
equation (8).

The daily and monthly out-of-sample regressions contained in the first
block of Table 4, Panels A and B (the univariate results), provide strong evidence
that the naive model is inadequate compared with all the other models, with a
large jump in out-of-sample R2 moving from the single regressor naive forecast
regression to any of the other forecast regressions (2.2% R2 in Table 4, Panel A for
the naive model, first row of results, to 12.1% R2 for the combining model, with
even more dramatic improvements for monthly forecasting in Table 4, Panel B).
There is a similar, though less extreme, advantage of the remaining models over the
simple ARCH model in terms of R2 or total out-of-sample explanatory power. All

7Results are not sensitive to this choice.
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TABLE 4. Daily and Monthly Out-of-Sample Regression Results.

Panel A. Daily Data Out-of-Sample Regression Results

Parameter Estimates (Robust Standard Error)

Regressors Naive ARCH Options Combining Model Full MLE R2

Naive 3.15∗∗∗ .022
(.432)

ARCH .870∗∗∗ .068
(.120)

Options 1.45∗∗∗ .119
(.214)

Combining 1.47∗∗∗ .121
(.207)

Full MLE 1.51∗∗∗ .116
(.219)

Naive .488 .828∗∗∗ .068
and ARCH (.485) (.132)

Naive −0.44 1.56∗∗∗ .120
and options (.625) (.238)

Naive −0.86 1.66∗∗∗ .122
and combining (.691) (.251)

Naive −0.52 1.64∗∗∗ .117
and full MLE (.648) (.258)

ARCH −0.14 1.65∗∗∗ .120
and options (.215) (.388)

ARCH −0.11 1.50∗∗∗ .125
and combining (.238) (.420)

ARCH −0.10 1.65∗∗∗ .116
and full MLE (.202) (.391)

Options .772 .637 .121
and combining (.621) (.620)

Options 2.84∗∗ −1.5 .120
and full MLE (1.26) (1.25)

Combining 1.45∗∗ .023 .121
and full MLE (.730) (.701)

Panel B. Monthly Data Out-of-Sample Regression Results

Naive 1.00 .022
(.952)

ARCH .387 .053
(.287)

Options .539 .071
(.333)

Combining .673∗∗ .097
(.338)

Full MLE .661∗∗ .137
(.290)

Naive .051 .347 .055
and ARCH (1.48) (.425)

Naive −0.58 .714 .071
and options (1.55) (.461)

(Continued)
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TABLE 4. Continued.

Panel B. Monthly Data Out-of-Sample Regression Results

Parameter Estimates (Robust Standard Error)

Regressors Naive ARCH Options Combining Model Full MLE R2

Naive −0.67 .781∗ .097
and combining (1.49) (.438)

Naive −0.27 .722∗∗ .137
and full MLE (1.23) (.340)

ARCH .074 .526 .081
and options (.399) (.477)

ARCH .004 .599 .101
and combining (.451) (.502)

ARCH .029 .654∗ .145
and full MLE (.323) (.356)

Options −0.09 .531 .099
and combining (.478) (.581)

Options −0.72 1.20∗∗ .158
and full MLE (.527) (.530)

Combining −0.15 .747∗ .139
and full MLE (.395) (.401)

Note: Presented here are the parameter estimates from bivariate regressions on the daily and monthly
data with both forecasts as regressors, as well tests for the significance of the parameter estimates in the
following regression:

ε̂2
t = α + β j ĥt , j + βi ĥt ,i + νt ,

where (ε̂2
t ) is the forecast error of the naive model (results are not sensitive to this choice), ĥt, j is the

forecast for model j, ĥt,i is the forecast for model i , and ν is a random error. Regression coefficient
estimates, standard errors, and p-values are based on generalized method of moments estimation and
heteroskedasticity- and autocorrelation-consistent covariances. The R2 is based on a simple ordinary least
squares.

∗∗∗Significant at the 1% level, two-tailed test.
∗∗Significant at the 5% level, two-tailed test.
∗Significant at the 10% level, two-tailed test.

the forecasts are individually significant at the daily forecast horizon,8 but only the
combining and full MLE forecasts are individually significant for at the monthly
horizon.

When we consider the first set of bivariate regressions, the second block of
Table 4, Panels A and B, we observe that the addition of the naive model forecast
to any of the other methods’ forecasts does little to increase the explanatory power

8There is also evidence that most of the forecasts are biased, with slope coefficient estimates signif-
icantly different from 1 and intercepts different from 0 (by inspection, not reported) echoing the results
of research such as Day and Lewis (1993). As the relative efficiency of different forecast methods is our
focus, this issue is not pursued here.
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of the regression at both the daily and monthly forecast horizons. Also, the β

coefficient estimate on the naive forecast is greatly reduced in magnitude, from
more than 3 to less than 1 in absolute magnitude; is negative when included with all
but the ARCH forecast; and is statistically insignificant in all cases. In the bivariate
regressions of the second block of Table 4, Panels A and B, all but the naive
forecast have statistically significant regression coefficient estimates at the daily
forecast horizon, but only the combining and full MLE forecasts are significant at
the monthly horizon. Together these results suggest that the naive model is easily
encompassed by the remaining models, which is consistent with volatility being
predictable.

The second set of bivariate regressions, in the third block of Table 4, Panels
A and B, permits us to explore the incremental value of the time-series ARCH
forecast for out-of-sample returns. For both the daily and monthly horizons, adding
ARCH to any of the remaining forecasts, options, combining or full MLE, increases
the R2 very little relative to not including ARCH. Most telling, the coefficient
estimate on the ARCH forecast is not only statistically insignificant (which it might
be simply because of multicollinearity) but also very near zero and greatly reduced
in magnitude from the regression with ARCH only.

These results suggest that simple univariate time-series information has
little to add relative to the information embedded in options prices, even when we
consider a daily forecast horizon with its concurrent mismatch of forecast horizon
relative to the option-implied volatility forecast for a monthly horizon. Together
these results suggest that the ARCH model is encompassed by the options, com-
bining and full MLE models.

The third set of bivariate regressions, in the fourth block of Table 4 Panel
A, reveal that at the daily horizon there is too much multicollinearity between the
options forecast of volatility and the combining and full MLE models (models that
incorporate the option-implied volatility with times-series information) to discrim-
inate between them. The leveraged coefficient estimates produced when options
and full MLE are included together (options having a coefficient estimate of 2.84
and full MLE of −1.5) are not particularly meaningful, as virtually no increase in
the R2 is associated with this pairing relative to either forecast used individually.
Similarly, in the fifth block of Table 4, Panel A (daily data), the pairing of the
combining model and full MLE barely changes the R2 relative to either forecast
individually. Overall, this suggests there may be no value to the volume interaction
variable and ARCH time-series forecast when using daily data, even though for
in-sample data the volume interaction terms appear significant. It may also be true
that we do not have a long enough sample of daily out-of-sample data to uncover a
significant effect from volume and ARCH.

The monthly data horizon is more definitive for determining the incremen-
tal value of the new time-series information introduced in this article, the volume
data, relative to information embedded in the option-implied volatility forecast.
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Consider the third set of bivariate regressions, the fourth block of Table 4, Panel B.
Here, we find that adding either the combining forecast or the full MLE forecast to
the options forecast drives down the magnitude of the options forecast coefficient
estimate and drives out the statistical significance of the coefficient estimate. As
well, the R2 of the models using volume information, combining and full MLE, is
much more than the remaining models that use only univariate time-series infor-
mation or option-implied volatility. The full MLE model, dynamically estimating
the univariate time-series coefficients, the volume interaction coefficients, and the
option-implied volatility coefficient, demonstrates a large advantage for out-of-
sample data relative to all of the other models, as it is the only model that has
a statistically significant coefficient estimate regardless of what other forecast is
added to it, and it is the only model that does not have its coefficient estimate driven
down to zero or negative values by any other forecast.

VI. Summary and Conclusions

Brooks (1998) and Heimstra and Jones (1994), among others, report that
lagged trading volume has little or no value to forecast return volatility. In this
article we provide a simple model with predictive power for forecasting return
volatility, with volume acting as a switching variable between states in which option-
implied volatility is more or less informative than ARCH for volatility forecasting,
perhaps reflecting important changes in information attendant with increases in
trading volume on the NYSE. We find that the accuracy of volatility forecasts can
be significantly improved by accounting for the volume effect and by combining
information from ARCH models and option prices accordingly, most markedly at
a monthly rather than a daily forecast horizon.

Results produced by our investigation reveal that if trading volume was
lower than normal during period t−1, the best forecast of time t volatility is found
by combining the ARCH forecast with the option-implied volatility forecast, with
similar weight being given to ARCH and options. Conversely, if trading volume
was higher than normal during period t−1, the best forecast of time t volatility
is obtained by placing more weight on options and less on ARCH. This result is
robust to a variety of perturbations of the in-sample period and model specification,
and seems to be largely driven by a decline in the quality of the ARCH forecast in
absolute terms as well as relative to the option-implied volatility forecast during
high-volume periods.

Altogether, this suggests that market prices contain more information rel-
ative to historical sources in high-volume periods than in low-volume periods (in-
deed, our work suggests a new way to test the relative informativeness of market
prices in various volume regimes). Our results also suggest either that option mar-
kets are more efficient in high-volume periods (that prices encompass historical
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information only in high-volume periods) or that option pricing models are less mis-
specified in high-volume periods. This suggests that researchers modeling ARCH
may profit from expanding the traditional ARCH information set to include vol-
ume, options, and other types of information in addition to the history of lagged
return innovations.
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