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Abstract

In this paper we discuss and expand recent innovations in forecast combining with artificial
neural networks (ANN5s). In particular, we demonstrate that ANNs can outperform traditional
forecast combining procedures, such as least-squares weighting, because ANNSs can account for
traditionally uncaptured interaction effects between time series forecasts. Data employed in this
study are price volatility forecasts for the S & P 500 stock index. € 1998 The Franklin Institute.
Published by Elsevier Science Ltd.
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1. Introduction

Different forecasters typically have access to different information and therefore
produce different forecasts. Given this, one would ideally combine the individual
forecasters’ various information sets to produce a single superior information set from
which a single superior forecast could be produced. In practice, however, it is often
possible to only obtain an individual forecaster’s forecast. In such cases, a popular
alternative is to combine in some fashion the available forecasts to produce a single
combined forecast in the hope of reducing the variance of the forecasting error
without inducing a bias to the forecast.

Traditional forecast combining methods produce the single superior forecast from
a linear combination of the various individual forecasts, where weights on each
individual forecast are chosen by a wide variety of methods including ordinary
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least-squares, mean absolute deviations, etc.? A potential drawback of these tradi-
tional combining methods is their restriction to consider only linear combinations of
the individual forecasts. There is in fact no guarantee that a linear combination is
efficient if the individual forecasts are based on non-linear models or if the true
underlying conditional expectation is a non-linear function of the information sets on
which the individual forecasts are based.

For example, consider the case of a dependent variable y = x;-x, + ¢ where ¢ is an
innovation and x; and x, are explanatory variables known to us. Suppose we do not
know the true relationship between y and x,; and x,. If forecaster 1 has the model
fi = a;x, (hence ignoring, incorrectly, x,) and forecaster 2 has the model f, = a,x,
(hence ignoring, incorrectly, x,) then any linear combination of the two forecasts will
be inferior to the non-linear forecast ( f; - f;), with = (1/x; - a,). Complications such
as these have become widely appreciated in modelling economic and financial data.’

Semiparametric artificial neural networks can be used to select optimal weights on
nonlinear functions of the individual forecasts, instead of using the traditional classi-
cal parametric techniques to linearly weight individual forecasts. Since ANNs have
the ability to approximate arbitrarily well a large class of functions, ANNs should
provide considerable flexibility to uncover hidden relationships between a group of
individual forecasts and realizations of the variable being forecasted.* In particular,
the ANN model allows interaction effects between forecasts, which permits an
ANN combination to “turn-off” one forecast in favour of the other in what could
be interpreted as a state-dependent fashion (e.g. one forecast “on” during recessions,
the other “on” during expansions), something which simple linear models
cannot do.’

Work by Donaldson and Kamstra [8], and Harrald and Kamstra [19] both make
use of ANNs to combine forecasts, Harrald-Kamstra being distinguished from
Donaldson—-Kamstra by the use of evolutionary programming to “evolve” an optimal
neural network model. Here we focus on the ability of the ANN models from these
papers to capture interaction effects that “turn-off” one forecast in favour of the other
in a state-dependent fashion. We explain, largely with the use of figures, the reasons
why ANN combining is superior to other methods and what this implies for future
research and application of the combining technology. In Sections 2 and 3 we describe
the various methods of combining forecasts, we compare them and present our data:
forecasts of return volatility for the S & P500 stock market index. In Section 4 we
discuss the criteria commonly used to compare combined forecasts and present our
results. Section 5 gives our conclusions.

2 See surveys [1, 2] for a review of traditional combining methods. For additional insight into recent
developments in the use of Bayesian analysis to form forecast combinations, see [3].

3See, for example [4-12].

*For technical details on ANN estimation und properties see [13-18].

*There are modeling techniques for regime-switching, such as Markov-switching, which formally
incorporate state dependencies and are also an interesting avenue of research, but will not be pursued here.
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2. Combining methods

As mentioned above, traditional combining methods rest on the implicit assump-
tion that the conditional expectation of the variable being forecasted is a linear
combination of the available forecasts. Thus, when combining two individual fore-
casts, f; ; and f ,, a single combined forecast F, is produced according to Eq. (1) by
appropriate choice of weights iy, 8, and f3,.

F::/fo‘i‘ﬁxfi.r‘*'/fzfz.x (1)

Perhaps the most popular combining method takes the cross-sectional average of the
individual forecasts, ie. f, =0, f; = , = 0.5. Another popular approach is to run
a multivariate ordinary least-squares (OLS) regression of the variable being forecasted
on the individual forecasts in-sample to obtain “optimal” forecast weights f,, #,, and
B> for use in out-of-sample combining.® A potential drawback of these and other
traditional methods is their restriction to consider only linear combinations of the
individual forecasts; a restriction which may lead to inefficient combined forecasts. We
therefore now discuss a semiparametric modelling technique, artificial neural net-
works (ANNs), which allows substantial nonlinearity in the conditional expectation of
combined forecasts.”

Let f; , denote the forecast from model j for time ¢. Let j and S, denote, respectively,
the in-sample mean and in-sample standard deviation of the dependent variable being
forecasted. We consider ANN models of the form in Eqs (2-4), as in [6]:

Zjg = (jjl — “\_’)/Sy, Jj€ {Ia 2} 2
2 -1
WYizy) = (1 + exp[— (}’o.i + Z }'1.1‘.;‘21'.1)]) (3)
i=1
k p
Fo=Ppo+ Z Bifin + Z 3;\¥(z7) (4)

i=1 i=1
ke{0,2}, pei{0,1,2,3}

Note that the function W maps into (0, 1). The forecasts from each model are
standardized as in Eq. (2). This standardization, together with the appropriate choice
of s, is employed to ensure that the ¥ function in Eq. (3) typically maps into the
region close to 3. Equation (4) displays the form of the final combined forecast.

A computationally simple approach to implement estimation of Eq. (4) which yields
a universal approximation result for the neural nets functions with arbitrary choice of

®It is shown in [20] that the OLS combination will in general be more efficient than the simple average.
Further, in [21, 22] it is demonstrated that weight-selection methods that are robust with respect to undue
influence from outliers have the potential to outperform the standard OLS procedure in some cases.

7 ANNs have been previously used for forecast combining in [8, 19]. For a review of the mechanics of
ANN modelling with special attention to application to economics data, the interested reader is directed to
[10]. As the mechanics of ANN modelling are now fairly well understood we restrict our attention to the
application of ANNs to forecast combination.
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s is presented in [16]. The strategy of setting the y’s with a uniform random number
generator to lic between — 1 and + 1, and then estimate the values of the § parameters
with least squares is adopted in [8]. Little difference is made in the performance of the
ANN model with deviations from this convention.

3. Forecast data

Stock market returns (i.e., the rate of change in stock prices) are well known to be
serially dependent, non-identically distributed, and quite fat-tailed, i.e., leptokurtic.
This has been considered troubling by some economists whose theories have sugges-
ted that stock returns should be closer to normally independently identically distrib-
uted. The serial dependence of stock returns is largely captured with a simple
autoregressive term of order 1: AR(1), i.e., a single lagged return is used to forecast the
current return. Depending on the return series and its periodicity (daily, weekly, etc.)
this sort of simple model will typically explain between 1 and 15% of the variation of
the return.® The non-identical distribution of the data of stock returns is revealed
by the observation that large price swings tend to occur in clusters so that the
second moment of the stock return distribution appears to vary conditionally on
past squared return innovations, a feature referred to as autoregressive conditional
heteroskedasticity (ARCH) by Engle [23]. ARCH effects imply fat-tails uncondi-
tionally, so ARCH models hope to resolve both the non-identical distribution of the
data and its leptokurtosis. Stock volatility-forecasting models are therefore designed
to produce a normalized return residual series (i.e., the return residual divided by its
forecasted standard deviation) which is homoskedastic and less leptokurtic than the
raw series.’

Individual forecasts for use in the combining exercises in [8, 19], and the current
paper are forecasts of the volatility in daily returns on the S & P 500 stock index, for
the period January 1969-September 1987, as produced by two popular models of
stock returns volatility: the moving average variance model (MAV) and the general-
ized ARCH model (GARCH). Given the preceding discussion of stock return regulari-
ties, these models begin by defining r, as the daily AR(1) stock return:

Fr = pPo + P1l—1 + &
The error g, has zero mean and conditional variance
2 e 2
E({"x |Ir) =40,

where I, is the available information.

8Some of this AR(1) component appears to be generated by the so-called “non-synchronous trading
effect” caused by the fact that small less liquid stocks trade less frequently, and therefore incorporate
information less quickly, than large heavily traded stocks. The mixing of small and large stocks into a single
index, such as the S & P 500, thus causes an AR(1) effect in the broad index as news enters prices of large
stocks quickly and small stocks more slowly.

9 See [24] for a detailed discussion of the ARCH literature.
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Our task in volatility forecasting is to form a forecast of a7 : the volatility of stock
returns. Although the true volatility is unobserved, it is related to 7. Let po and p, be
estimates of the parameters py and p,, and let

IE’fr:"'r—,ao_,b\lrr—l- (5)
The market volatility measure is &2, which has expectation ¢/. The conditional
variance forecast from the MAV model is

1 n
A2 A2
6f =—- ) &4,
t n i;] i
with n chosen to minimize the Schwarz criterion and the parameters p, and p, esti-
mated with OLS. The conditional variance forecast from the GARCH(1, 1) model is

A2 ” A A2 AoA2
G; =g + %10, + dabi-

with parameters pg, py, %o, %;, and x, estimated jointly with maximum likelihood
methods and the assumption of conditional normality of ¢,.

The application of MAV, GARCH and other ARCH-type models to the task of
forecasting stock market volatility is documented and motivated in [24, 25] and the
numerous references cited therein. The most important feature of these forecasts, for
our purposes, is that the MAV and GARCH models used to produce them employ
partially non-overlapping information sets. Thus, there may be an advantage to use
a combined forecast as opposed to either of the individual forecasts. The period
1969:1-1979:12 was used for model sclection and specification tests—the in-sample
period. The remaining data was used for out-of-sample forecasting and forecast
evaluation. For details, see [8, 19].

4. Comparing forecasts

There are a number of statistical criteria commonly used to evaluate combining
models. The most basic focus is on the ability of the models to reproduce broad
features of the data, including comparisons of summary statistics on the unconditional
moments. A satisfactory combining method must at least pass such basic specification
tests and do no worse than the forecasts incorporated in the combination. There are
also comparisons of the forecasts on the basis of root mean squared forecast error
(RMSFE) and mean absolute forecast error (MAFE), both in- and out-of-sample.
Finally, there are comparisons of the combining methods on the basis of statistical
tests of superior performance, including “encompassing tests” on out-of-sample fore-
casts. Such tests address the criticism that ranking models by RMSFE and MAFE do
not provide a measure of statistically significant difference in performance across
forecasting models.

For a comparison of the in- and out-of-sample forecasting performance of the MAV
and GARCH individual models discussed above, as well as combined models based
on OLS and the ANN model in Eqs. (2-4), see [8, 19]. They find that all the models
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attain a satisfactory level of performance both in- and out-of-sample, that the RMSFE
and MAFE do not give a clear ranking of the models, and that the encompassing tests
clearly favour the ANN models. The purpose of the current paper is not to reproduce
these statistical results; the interested reader is directed to the original articles for such
details. This paper’s purpose is to explain graphically the reasons why ANN combin-
ing is superior to other methods and what this implies for future research and
application of the combining technology. It should be noted that these are statistical
criteria, with sampling error properties—questions of theoretical global optimality
properties of ANN's are not answered by this work. See footnote 4 for work
addressing optimality concerns.

Figure 1 plots the surfaces of the forecasting functions for the ANN and OLS
methods which combine the individual MAV and GARCH forecasts (horizontal axes)
into a single combined forecast (vertical axis) normalized so that their average value is
equal to one. This surface corresponds to the model parameters estimated on the
in-sample period, 1969:1-1979:12. The vertical height of each surface therefore repre-
sents the value of the combination forecast for each pair of individual forecasts listed
on the basis of the figure. The flat surface of circles in Fig. 1 plots the relationship
between the MAV and GARCH volatility forecasts and the OLS combined forecast.
The curved surface of diamonds reveals the way in which the MAV and GARCH
individual forecasts are combined to produce the ANN forecast.

A comparison of the surfaces in Fig. 1 provides visual confirmation that the ANN
nonlinear combining method is doing something very different from the OLS linear
method. For example, when the GARCH forecast is 6, a fall in MAV from 6 to
5 produces almost no change in the ANN combined forecast, which remains at
approximately 3. However, when GARCH is 3 a decline in MAV from 6 to 5 produces
a huge fall in ANN-combined volatility from 9 down to 3. Similarly, when MAV is 5,
an increase in GARCH from 2 to 6 produces very little movement in the combined
ANN forecast, which stays around 3. But, when the MAV forecast is 3, changes in
GARCH between values of 2 and 6 produce huge swings in the combined ANN
forecast, from a low of close to zero up to a high of 3. In other words, the impact of
a change in GARCH on the ANN combined forecast is highly influenced by the
interaction with the MAYV forecast, and vice versa. In contrast to this highly flexible
ANN response function, the response of the OLS linear combination forecast to
changes in MAV and GARCH inputs remains constant no matter what values MAV
and GARCH assume.

Whether the functional differences between ANN and OLS are of any practical
importance depends, of course, on whether the data ever falls into regions of difference
between OLS and ANN. Figure 1 therefore also plots the actual data points from the
period 1969:4-1979: 12, presented as pillars with their height slightly raised so that
they are easily visible. (The flagged pillars—roughly half of all the data points—are
data points for which the ANN combination produces a smaller forecast error than
does the OLS combination.) From these pillars we see that the majority of data points
in Fig. 1 cluster in the areas of intersection between the ANN and OLS forecasting
functions where the ANN and OLS functions are approximately equal (e.g., near the
front right side of the figure where MAV and GARCH are both close to zero).
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F

ANN Forecasting Surface: Diamonds
OLS Forecasting Surface: Circles
Data Points: Pillars
ANN Forecasts Superior: Flags

Fig. 1. S& P 500 stock market volatility forecasting surfaces.

However, there are a significant number of data points in areas where the OLS and
ANN curves are far apart (e.g., near the back left side of the figure where the MAV and
GARCH forecasts are large). In these regions one would therefore expect the interac-
tive effects which the nonlinear ANN captures to be potentially important.!®

As an example of the importance of the ANN’s flexibility to treat different combina-
tions of inputs differently, Fig. 2 plots various volatility forecasts for the period

'“Tt should be noted that questions of “superiority” of one method over another cannot, of course, be
resolved with inspection of such figures. Tests of forecast encompassing and comparisons of RMSFE and
MAFE, mentioned above, are appropriate.
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Fig. 2. S& P 500 stock market volatility forecasts.

surrounding the month of October 1974 (i.e., the fourth week in September through
the first week in November 1974). The plain line in Fig. 2 plots the squared residual
from Eq. (5), i.e., the dependent variable the forecasts are trying to explain. As in Fig. 1,
ANN is represented by diamonds and OLS by circles. Solid dots represent MAV and
stars GARCH.

Note from Fig. 2 that all of the series capture the magnitude of the peak in “true”
volatility (plain line) during the second week of October. However, only ANN
captures the sudden decline in “true” volatility immediately after the peak. Both MAV
and GARCH start to decline immediately after the mid-October peak—and so does
OLS, which is a simple linear combination of MAV and GARCH-—but it takes
several weeks for the decline to be completed. The rapid decline in ANN arises in spite
of the slow decline in MAV and GARCH because ANN is able to condition on the
information that both MAV and GARCH assume relatively extreme values during
mid-October.

To see the dependence of the ANN combined forecast on the GARCH/MAYV
interaction, and the link between Figs 1 and 2, we can start tracking the various
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forecasts beginning 9th October, when MAYV is 5.9 and GARCH is 4.4. These values
put us in the middle back portion of Fig. 1 where the ANN surface rises to produce an
ANN combined forecast of 6.5, as seen in Fig. 2 for 9th October: the peak (note that
OLS is only 4.5 on 9th October). In contrast, on 16th October both MAV and
GARCH are in excess of 5. This puts us at the far left back corner of Fig. 1 such that
the ANN model delivers a combined forecast of only 3. Thus, even though GARCH
and MAYV have each fallen only approximately one point over the week (i.e., from
their 10th October peak values to their values on 16th October), the ANN combina-
tion has fallen over three points. The ANN “interaction effect” therefore pushes the
ANN nonlinearly combined forecast down much more quickly than either of the
individual forecasts or the OLS linear combination.

5. Conclusions

In this paper we have argued that the nonlinear combination of forecasts with
artificial neural networks can provide substantial improvements over traditional
linear combining methods. We have explained this as occurring as a function of the
ability of the ANN model to capture interaction effects between inputs to the ANN
model. These interaction effects can be interpreted as state dependencies of the
functional relationship between the dependent variable and the explanatory variables.
The ability of ANNs to capture such interaction suggests the potential of future work
in economic forecasting where it is likely important to allow for interplay with the
economic state (e.g., recession, expansion, etc.). This feature of ANNs also has obvious
implications for engineering applications like multi-sensor tracking systems in ro-
botics and elsewhere.
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