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Abstract

We construct a seminonparametric nonlinear GARCH model, based on the Artificial
Neural Network (ANN) literature, and evaluate its ability to forecast stock return volatility
in London, New York, Tokyo and Toronto. In-sample and out-of-sample comparisons
reveal that our ANN model captures volatility effects overlooked by GARCH, EGARCH
and GJR models and produces out-of-sample volatility forecasts which encompass those
from other models. We also document important differences between volatility in interna-
tional markets, such as the substantial persistence of volatility effects in Japan relative to
North American and European markets.
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1. Introduction

The preponderance of empirical evidence presented to date in the financial
econometric literature suggests that stock return volatility is not only time varying
but that future volatility is asymmetrically related to past return innovations, with
negative unexpected returns affecting future volatility more than positive unex-
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pected returns. ' Failure to capture these features of returns behavior may cause
incorrect inference in tests of asset pricing relationships and can lead to the
suboptimal formation of derivative strategies. © For these reasons, interest in
asymmetric conditional volatility models — such as Glosten, Jagannathan and
Runkle’s (1993) Sign-GARCH (hereafter GJR) — has increased of late, as has the
use of statistical procedures — such as the Engle and Ng (1993) sign bias tests —
which are specifically designed to capture asymmetric volatility effects.

An important task in applied research is to decide which of the many possible
volatility models one should employ in any given situation. Recent papers by
Pagan and Schwert (1990) and Engle and Ng (1993) attempt to provide some
guidance in this respect by evaluating the modelling ability of various statistical
procedures. Unfortunately, their results suggest that none of the popularly em-
ployed models are able to adequately capture asymmetric effects, at least for the
particular stock market indices and time periods studied (the S&P500 Index
1835-1937 in Pagan and Schwert (1990) and the Japanese TOPIX Index [980-
1988 in Engle and Ng (1993)) although some models, such as GJR. do come
closer to capturing asymmetric effects in-sample than others, such as EGARCH.
However. it is not clear from existing work how well models such as GJR would
perform forecasting volatility out-of-sample and in markets other than Japan.

Given lessons learned from the existing literature, the purpose of our paper is
twofold. Our first objective is to develop a new model for conditional stock
volatility which can capture important asymmetric effects that existing models do
not capture. To this end we develop a parsimonious seminonparametric GARCH-
type model, inspired by recent work in Artificial Neural Networks (ANNs), that
has the functional flexibility to capture the nonlinear relationship between past
return innovations and future volatility. Recent work by Donaldson and Kamstra
(1996a,b). Hutchinson et al. (1994) and others suggests that nonlinearities in
financial data are well approximated by the ANN structures and logistic trans-
forms we employ and, indeed, evidence presented below confirms their usefulness
in modelling the conditional volatility of stock returns.

Our second objective is to undertake a more thorough evaluation of various
volatility models — including GARCH, EGARCH, GJR and our ANN - (o
determine which model works best in which situation, In doing so, we depart from
existing work in two respects. First, while previous comparative studies have
focused on only one returns series at a time, we evaluate our models using daily
stock returns data 1970-1990 from four different international markets: London,

! Recent papers which discuss volatility asymmetry include Campbell and Hentschel (1992), Engle
and Ng (1993), Glosten et al. (1993), Nelson (1991) and Schwert (1989). See Bollerslev et al. (1992)
tfor a review of the conditional volatility literature in general.

* See Diebold et al. (1993), MacKinlay and Richardson (1991). Bollerslev et al. (1988). Ferson and
Harvey (1991), Engle et al. (1992), Baillie and Myers (1991) and Kroner and Sultan (1993} for
evidence on the significant costs of ignoring changing volatility in empirical applications.
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New York, Tokyo and Toronto. Not only does this allow us to document
interesting differences between volatility in various markets, it also helps us
differentiate between a model’s ability to fit one particular series from its ability to
explain returns behavior more generally. Second. unlike previous work, we
investigate the out-of-sample performance of our ANN and various traditional
volatility models using parameter estimates that are updated each day, in a rolling
fashion, so as to produce for each day a new set of one-step-ahead out-of-sample
forecasts on which to base our evaluations. This allows us to better assess model
performance in the conditional forecasting environments in which volatility mod-
els are intended to operate.

Our ANN model for stock volatility and the data used in our investigation are
presented in Sections 2 and 3 respectively, Sections 4 and 5 report model
specifications and parameter estimates and present in-sample diagnostics for our
various models and indices. The ability of our ANN and other traditional models
to forecast stock return volatility out of sample is then studied in Section 6.
Results produced reveal that our ANN model generally outperforms popular
alternatives. Section 7 concludes.

2. Volatility models

Let R, be a stock return with conditional forecast E(R [/,_ ), as in Eq. (1)
Rr:E(Rr'Ir—l)+El (1)

where /,_ | is the conditioning information set on which forecasts are based and
the additive forecast error €, has zero mean and conditional variance

E(ell_)=0 . (2)

A well recognized problem with stock return data is that the €, appear to be
drawn from a time-dependent heteroskedastic distribution. * The central purpose
of conditional volatility models is to capture this feature of the data so as to
produce a forecasted variance &,°, along with a return forecast error &, such that
the standardized residuals, €,/¢,, are homoskedastic and independent.

A great many statistical models have been proposed in an effort to capture the
time-dependent heteroskedasticity of stock returns, the most popular of which are
members of the ARCH family fathered by Engle (1982). As a symmetric-model
benchmark against which to measure results from our ANN model below, we
therefore consider the Bollerslev (1986) GARCH model,

4 q
012:a+ ZB:'O—ILL{-{_ Z’y}ff{j (3)

i=1 j=1

* See, for example, Bollerslev et al. (1992).
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which treats positive and negative return shocks symmetrically through lagged
terms in e’ and which nests as special cases a variety of other symmetric
volatility models, including the Engle (1982) ARCH (p =0), the Engle and
Bollerslev (1986) IGARCH (X7, B; + X%, y;=1), and the Moving Average
Variance Model (MAV) used by authors such as French et al. (1987) (p =0,
Y, =1/q Y;). Due to its extensive use in the literature, we also consider as an
asymmetric benchmark the Nelson (1991) Exponential GARCH model,

14 q
Ino’=a+ Y B lng’, + Zyj[ﬁ(e/a),,_, +i(e/o),_ ;|- \/2/771

i=1 j=1

(4)

which uses a logarithmic specification and the term in square brackets to account
for asymmetric effects in lagged €. *

In addition to the familiar models mentioned above, several new volatility
models have been proposed of late, including Multiplicative ARCH, Piecewise-
Nonlinear ARCH, Flexible Fourier Forms, Hamilton-style regime switching mod-
els, kernel estimators, and the like. Many of these have already been investigated
by authors such as Pagan and Schwert (1990) and Engle and Ng (1993). Their
results reveal that, while some improvement over more basic ARCH models 1s
sometimes observed, none of these alternative models consistently or substantially
outperform simple GARCH models. ° Results from the Engle and Ng (1993)
analysis of Japanese stock returns does suggest, however, that Glosten, Jagan-
nathan and Runkle’s (1993) sign-ARCH model - referred to as GIR — shows the
most potential. As an additional benchmark against which to compare our new
model below, we therefore also consider the GJR model in Egs. (5) and (6).

r 4 "
0')‘2 =a+ ZB!O'(z—z'+ E‘YJE!Z—‘I + Z (kal-kelsz (5)

i=1 j=1 k=1

1 if e_, <0,

Di=10 it e_ >0 (6)

¥ The definition of EGARCH( p, ¢) used by Nelson differs from that subsequently employed by
authors such as Pagan and Schwert (1990). Here we foliow the Pagan and Schwert definition, where p
and g denote the number of lagged variances and normalized residuals, respectively.

’In a previous draft of this paper we also investigated a variety of additional models, including
restrictions of (3) necessary to produce ARCH, IGARCH and MAV, as well as existing seminonpara-
metric volatility models such as the Flexible Fourier Forms (FFF) found in Pagan and Schwert (1990).
However, like Pagan and Schwert, we found that these models performed worse than even simple
GARCH. This is especially true for FFF, which suffered from serious overfitting problems in the
out-of-sample tests conducted below. Due to space constraints we do not report results for these models
here, though they are available from the authors on request.
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As can be seen from Egs. (5) and (6), GJR is basically an augmentation of
GARCH that allows past negative unexpected returns to affect volatility differ-
ently than positive unexpected returns.

We now introduce a new asymmetric model which builds on the relative
success of GJR over GARCH, as documented in the tests below. This model
essentially adds seminonparametric nonlinear terms to GJR in an attempt to
account for nonlinear effects uncaptured by more basic ARCH models. While the
approach of adding nonlinear terms to an ARCH model is by no means unique to
this paper (see, for example, Engle and Ng, 1993), the manner in which these
terms are added is new and, as we shall soon demonstrate, rather effective. Qur
particular approach is inspired by the literature on Artificial Neural Networks.

An Artificial Neural Network (ANN) is a collection of transfer functions which
relate an output variable of interest, ¥, to some input variables, X, which may
themselves be functions of even deeper explanatory variables, e.g. X = g(Z).
While a wide range of transfer functions has been employed in the ANN literature,
the nonlinear logistic function ¥ =a+ (1 +exp[—(c + bX)]) ™' is perhaps the
most popular. Fully linear functions, such as ¥ = @ + bX, can be used to augment
the nonlinear functions if desired. ® Fig. 1 provides a simple example, with input
X measured on the horizontal axis, output ¥ on the vertical axis, and the ANN
relating X to Y defined as Y=X]_,y, with vy, =1+0.1X, y,=05—-( +
exp[—(75+40X)D7", y;=05-(1 +exp[—(0+2X)D ', and v,=1—-(1 +
expl— (170 — 85X)]) ' being the four ‘information nodes’ of the network.

Notice from Fig. 1 that, when X < =2, v, = 0.5, y,=05and y,= 0,50 ¥’s
behavior is determined largely by the linear node v, = 1 + 0.1X. As X rises past
about —2, y, rapidly decreases to its minimum of y, = —0.5 so that, by the time
X reaches roughly —1.6. Y=Yy, falls from 1.8 down to 0.8. Then, as X
continues towards zero. the v, node begins to activate — although its response is
less immediate given y;’s smaller gain (i.e., 2 X instead of 40X ) — so that, by the
time X =15, Y=0.2. Finally. as X rises past 2, the y, node activates to rise
from O to 1 so that Y rises from 0.2 up to 1.2. The effect on ¥ of any further
increases in X are then determined largely by the linear node y,. The final shape
produced by Fig. 1's ANN is thus a complicated dip-pattern in which different
segments have different slopes. By extension one can see that, with many nodes
activating and deactivating with different slopes and intercepts over various ranges
of X. one could produce as an output response Y almost any desired function of
the input X (or, with higher dimensionality, any desired function of a group of
mputs X,,....X,, which could themselves be cross functions of each other
and/or subordinate functions even deeper variables X, = g(Z)). Indeed, as

® See Hertz et al. (1991) for a hasic introduction to ANNs and Kuan and White (1994) for a review
of the econometric issues involved and some discussion of ANNs' many economic and statistical
applications.
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Fig. |. Example of an ANN transter function.

demonstrated by authors such as Homik et al. (1989, 1990), ANNs have the ability
to approximate arbitrarily well a large class of functions while requiring only a
small number of parameters to be estimated relative to sample size. ’

An ANN can be as simple as a single node with a single input. In principle, an
ANN can also consist of many initial nodes which filter raw input data to produce
intermediate outputs, with these intermediate outputs used as inputs to a second
layer of nodes. with the second layer’s outputs perhaps used as inputs to a third
layers of nodes, and so on. until the ultimate output is finally produced. In
practice, however. ANN researchers have found that, provided a sufficient number
of nodes are placed on the first hidden layer of the ANN, higher layers are not
usually needed to establish a satisfactory connection between the initial raw inputs
and the final output. For example, the network whose output is graphed in Fig. 1 is
a single hidden-layer ANN with four nodes: ¥,. ¥,. ¥;, ¥,. In this paper, we
employ a single hidden-layer ANN where the number of nodes is selected
optimally by reference to the data in a manner to be described below.

" For further details see Hertz et al. (1991). Hornik (1991). Stinchcombe and White {1994) and
White (1989, 1990).
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Use of ANNSs in financial econometrics is expanding rapidly. For example.
ANNs are used by Dutta and Shekhar (1988) to rate bonds, by Kimijo and
Tanigawa (1990) to search for patterns in stock prices, by Tam and Kiang (1992)
to predict bank failures, by Hutchinson et al. (1994) to estimate option prices. by
Donaldson and Kamstra (1996a) to forecast dividends, and by Donaldson and
Kamstra (1996b) to combine financial forecasts. In the current investigation of
conditional stock volatility, we employ as our ANN-ARCH model the logistic
augmentation of GJR specified in Egs. (7)—(11).

r 4 ¥ K
(T’: =a+t ZB{O'IZ—i + Z yjerz—j + Z (ﬁlekaf:—A + Z glrw( :‘!A’Ii) (7)

i=1 J=1 k=1 =1

fl it €, <0,

= ] 8

Dy 10 if e, >0 (8)
Iz m -
V(o A) = |1 +exp| Ay g0t E E (A ”] , (9)
d=1|w=1

:'rfd=[erfd_E(e)]/‘tE(ez)' (10)
1
5 Aia., ~ uniform [-1.+1]. (11)

Eq. (8) is the GIR dummy variable, while Eq. (9) specifies the logistic ANN
nodes. Eq. (10) provides a normalization of € necessary to prepare the lagged
unexpected returns as inputs into the nodes. All the data are transformed using the
in-sample mean and variance to conform to Eq. (10)'s restriction. To achieve
identification of the ¢ parameters in Eq. (7) it is necessary to select values for the
A scaling factors in Eq. (9) (this is why ANN is a seminonparametric model as
opposed to fully parametric). We follow the computationally simple approach of
first choosing the A, , . with a uniform random number generator, so the
transformed lambdas lie between — 1 and + 1 as specified in Eq. (11), and then
estimating the «. B. y, ¢, & parameters in Eq. (7) with maximum likelihood.
Work by Stinchcombe and White (1994) yields a universal approximation result
for ANNs with such an arbitrary choice of A and. in practice, little difference is
made in mode] performance with deviations from this convention. Further explana-
tion is provided in Section 4 below.

3. Data and model specification
Our investigation is based on the daily closing values of the Standard and

Poor’s 500 Index (S&P500). the Toronto Stock Exchange Composite Index
(TSEC), the Japanese Nikkei Index (NIKKEI) and London’s Financial Times



24 R.G. Donaldson, M. Kamsira / Journal of Empirical Finance 4 (1997) 17-46

Stock Exchange Index (FTSE) from January I, 1969 to December 31, 1990. In
each case the index return, R,, is the first difference of log prices without
dividends. ®

All the volatility models we study are intended to capture the conditional
variance of the unforecastable component of returns. As such we begin by
investigating various specifications for conditional returns, including specifications
in which returns are modelled as a constant, as a simple AR(1) process, and as a
more complicated seasonal process with dummy variables for months of the year,
days of the week, and each gap of i days between trading days, plus MA and AR
terms as necessary to completely whiten the data in sample. In an attempt to
maintain a level playing field between models and across indices, we select from
among these choices ‘optimal’ model specifications with a single common crite-
rion; the Schwarz Criterion. ° Interestingly, for each index the return model
ranked highest by Schwarz is the simple AR(1): R,=a,+aqR,_, +€. We
therefore follow authors such as Akgiray (1989) and model the first difference of
log prices, R, in (1), as an AR(1) process. '

Since an important objective of this paper is to compare out-of-sample perfor-
mance between models and across indices, we begin our model selection proce-
dure by breaking our data sample in half so that model specifications can be
chosen on the 1969-1979 subsample and volatility forecasted into 1980-1990.
Previous comparative studies conducted on a single index (e.g., Pagan and
Schwert, 1990; Engle and Ng, 1993) have exogenously set model specifications to
match those traditionally employed in the literature. However, our desires to
maintain a level playing field among models and across indices, and to uncover
whatever differences may exist between the S & P500, TSEC, NIKKEI and FTSE,
leads us to conduct a data-driven search for optimal specifications. In doing so, we
use the selection algorithm described below to examine GARCH and EGARCH

® Dividends are not included because they are not avaitable for all the indices. However, 1o
investigate the robustness of our US results, we did try including dividends in the S&P500. Not
surprisingly, our results were extremely similar to those based on the no-dividend S&P500 as reported
in the paper. We also investigated replacing the S&P500 with the frequently employed CRSP index,
but again found virtually no difference in our results. We report resuits for the S&P500 in our paper
because the S&P500 represents roughly the same fraction of the relevant market as do the other indices
we study, with a similar preponderance of higher capitalization stocks. The S&P300 is therefore more
easily comparable to the other indices studied.

® For robustness we did investigate the use of other selection criteria, such as AIC and adjusted R,
but found little difference in volatility results obtained. We settled on Schwarz because it chooses the
most parsimonious model specifications.

' For robustness we did investigate other specifications for R, in Eq. (1), including the full seasonal
dummy ARMA version, but found no substantive difference in results for the volatility models. If
anything, the more complex specifications for Eq. (1) added noise to our out-of-sample forecasts,
suggesting the possibility that more complex seasonal ARMA models may overfit the data in some
cases.



R.G. Donaldson. M. Kamstra / Journal of Empirical Finance 4 (1997) 17-46 25

models on the grid p,g €0, 5] and GJR on the grid p.q.r €0, 5]. For ANN we
first obtain five different randomly produced sets of A and then, for each of these
five random A sets, we estimate ANN on the grid p.q,r,s,0,m € [0, 5]. For each
specification in the grid, the random As that fits the in-sample data ‘best’ (to be
defined below) is chosen as the candidate ANN model for that point on the
specification grid. '' Since the [0, 5] grid more than encompasses the usual range
of models employed in the literature (for example, GARCH specifications of (1, 1)
are most common), and since for each model and index the data always selects a
specification well within the interior of the search grid, we believe that our search
grid does not unduly constrain the parameter space.

To select our ‘best’ specification for each model and time series. we begin by
jointly estimating an AR(1) specification for the mean Eq. (1) with each volatility
model, in tumn, using maximum likelihood on the 1969-79 data, with data from
1969 used for pre-sample conditioning. We begin with low order models (e.g.,
GARCH(1, 1)) and work upward into the [0, 5] grid as required to fit the data. '*
To restrict ourselves to reasonable specifications, models which produced negative
variance forecasts in-sample are discarded. We also discard models which pro-
duced & s which lead to in-sample rejection of a Box—Pierce specification test for
uncaptured autocorrelation at 24 lags in the squared standardized residuals (€ /&,)".
For each particular mode] and data series, the undiscarded specifications are then
ranked according to the Schwarz Criterion. The best specification according to
Schwarz is chosen as the representative for that particular modelling technique and
data series. '*

Table 1 reports the specifications chosen. As one would expect, GARCH
specifications are of relatively low order in all indices. However, our model
selection procedure selects the traditionally employed EGARCH(1, 1) specification
for only the FTSE. As in Pagan and Schwert (1990), we find that two lags of the
squared error are required for the S&P500 EGARCH. For NIKKEI, the more
complex EGARCH(3,2) is chosen by Schwarz. Indeed, the NIKKEI in general
chooses more complex models than the other data series, suggesting that volatility
effects in the NIKKEI may be more complex than in other markets. Formal tests
of this conjecture are presented below.

"' See Stinchcombe and White (1994) for some theoretical justification of such a random procedure.

"? For example. consistent with results from the existing literature, GIR specifications beyond r =1
were never required to remove asymmetric effects and were therefore not entertained. Conversely, up
to three lagged o were required for EGARCH in some series.

"* Other criteria, such as AIC etc., could have been used here instead. We employ Schwarz because it
delivers relatively parsimonious specifications and because it is widely used in the literature (e.g.,
Neison (1991) uses Schwarz to select EGARCH models). The Schwarz Criterion has been shown to
provide consistent estimation of the order of linear ARMA models by Hannan (1980). As noted by
Nelson (1991), the asymptotic properties of this criterion are unknown in the context of selecting
ARCH models.
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Table |

Model specifications employed *

Index name GARCH p. g EGARCH p. g GIR p.gq.r ANN p.g.r.s.t.m
S&P500 1.1 1.2 1,11 L1114
NIKKEI 2.1 3.2 R 2.1.1.3.2.2

FTSE 1.1 1.1 111 1.1.0.1.1.2

TSEC 2.1 2.1 201 2L L

* The table reports optimal mode] specifications chosen with the algorithm outlined in the text for New
York’s S&P500. Tokyo’'s NIKKEI, London’s FTSE and Toronto’s TSEC indices on daily data
19691979 for the models listed below. These specifications are employed throughout the article in
both in- and out-of-sample tests on 1969-1990 data.

Returns: R, =uy+a R,_ |+ €: €, ~(0. 07

GARCH: o7 =a +L/ B0’ +L% 1y

EGARCH: o’ =a +¥L/L, B Inal + L0 y[8le/a),  +Ne/a) |1—2/7]

. 2 _ v 2 Al 2 Lal} RN
GIR: o " =a+L/ | Bo_ +L_ (ve +L. 0, D, (e ;.

)

L if e _, <0,

Di=V0 it ¢_, =0

ANN: o =a +E/L, B0 + 9 v L b D, €+ L EW A
I if €., <0.

Dv=vo it e 20

Wz A =1 +expliy oo + 55 ([0 A, 20 D)

oou=1e “,*E(s))/E(\/;):
A, 4, ~ uniform{ — 1. +1]

In terms of nonlinear effects in the ANN model. it is interesting to note that, for
ANN. the S&P500. TSEC and NIKKEI require only one GIR term (r = 1) while,
in the FTSE. the ANN terms capture enough nonlinearity so that no GJR terms are
required (r = 0). This suggests that ANN should dominate GJR (and thus GARCH)
in-sample. although there is of course no guarantee that ANN should dominate
out-of-sample. Indeed. if ANN overfits the in-sample data, as do many seminon-
parametric forms, then out-of-sample performance will suffer. As shall be demon-
strate in Section 6 below, an attractive feature of ANN is that it does not tend to
overfit, unlike Flexible Fourier Forms and other seminonparametric structures (see
Pagan and Schwert. 1990). "

4. Parameter estimation and in-sample diagnostics

Parameter estimation is conducted jointly on an AR(1) specification for Eq. (1)
- ie. R, =a,+aR,_,+¢€:¢~(0.0°) - and the appropriate model for o,”,

" For completeness we did estimate FFF models for our data but, like Pagan and Schwert (1990),
found them to perform very badly both in- and out-of-sample in spite of careful modet selection
procedures. We do not report FFF results here due to space constraints.
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Table 2

GARCH estimation results and in-sample diagnostics. January 1. 1969 to December 31, 1979 *

Panel A: Parameter estimates (Bollerslev—Wooldridge robust standard errors)

Parameter S&P3500 NIKKEI FTSE TSEC
a, 1.985E - 04 4.245E-04 3.050E—05 2.608E - 04
(1.366E— 04) (2.052E—04) (2,424E—04) (1.180E —04)
a 2.436E - 01 1.363E - 01 TT42E-02 2.883E-01
(1.915E—02) (2.703E - 02) (2.069E~02) (2.476E—02)
o 7.367E — 07 6.645E - 06 2.7TA9E-06 5.344E-07
(2.511E-07) (1.655E —06) (9.572E—07} (2.313E-07)
B 9.232E-01 5.734E -0l 9.082E— (01 9411E-01
(1.456E —02) (6.733E-02) (1.490E - 02) (1.579E—02)
Y 6.584E—-02 1.967E - 01 7.924E-02 2.539E -0l
(1.425E-02) (5.920E—-02) (1.256E—02) (5.499E - 02)
Ya - 1.950E - 01 - —2.055E-01
- (1.055E—01) - (5.335E-02)

Panel B: Diagnostics ( p-values with the exception of the log likelihood)

Statistic S&P300 NIKKE! FTSE TSEC

Log likelihood value 11099.829 12821.015 9790.554 11528.891
ARCH test 0.929 1.000 0.945 0.904
Sign bias test 0.269 (0.152 0.013 0.290
Neg. sign bias test 0.001 0.188 0.028 0.031
Pos. sign bias test 0.045 0.076 0.359 6.033
Joint test 0.019 0.501 0.268 0.054

* The 1able reports parameter estimates and standard diagnostics for New York's S&PS00. Tokyo's
NIKKEI. London’s FTSE and Toronto’s TSEC indices on daily data 1969-1979 for the model listed
below.

Returns: R, =a,+ ¢, R, + €: € ~ (0,07}

GARCH: o7 = a + /L, B0, + L1 ye’

J

Results for the 1969—-1979 subperiod are reported in Tables 2-5. which present
parameter estimates (along with Bollerslev and Wooldridge (1992) standard
errors) and in-sample diagnostics on the standardized residuals. €,/4,. for Table
1’s specifications. Standard diagnostics include the model log likelihood and the
p-value from a traditional Ljung and Box (1978) test for symmetric ARCH at 24
lags. Since in this paper we are particularly concerned with asymmetric volatility,
and our search for optimal model specifications was conducted over a grid with up
to five lags ~ though. as Table 1 reveals, no modei optimally selected anywhere
near this many lags — we also report the Engle and Ng (1993) Sign Bias Test,
Negative Sign Bias Test. Positive Sign Bias Test and Joint Sign Bias Test, all at
five Jags, for the presence of asymmetric ARCH effects.

Table 2 reports results for GARCH. The parameters a, and «, are the intercept
and AR(1) coefficient. respectively. for the return Eq. (1). The remaining parame-
ters are from the GARCH volatlity model in Eq. (3). For all indices. parameter
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Table 3
EGARCH estimation results and in-sample diagnostics. January 1. 1969 to December 31, 1979 *

Panel A: Parameter estimates (Bollerslev—Wooldridge robust standard errors)

Parameter S&P500 NIKKEI FISE TSEC
ay 1.584E—05 1.434E — 04 — 1.784E—04 4.154E — 04
(1.373E—-04) (1. 149E — 04) (2.413E—04) (1.160E —04)
a 2.384E - 01 1.738E—01 7.447E (2 2.975E - 01
(1.973E-02) (3.089E - 02) (2.120E —02) (2.336E — 02)
a ~4.226E —02 —8.077E—02 —1.368E— 01 — 1.874E~01
(5.584E—-01) (4.602E—01) (4.205E—01) (4.101E-01)
B, 1.807E + 00 1471E+00 9.840E — 01 9.805E-01
(8.243E-01) (2.659E—01) (5.607E —02) (4.449E — 02)
8- —8.112E-01 —4.795E—01 - -
(8.050E—01) (2.331E—01) - -
5 —5.937E-01 —3.499E — 01 —1.918E-0! 487SE-02
(1.451E+00) (1.338E—01) (1.906E —01) (1.O37E—-01)
Y 2.824E~02 3.320E - 01 [.841E —01 4.365E—01
(5.211E—02) (1.665E—01) (9.419E ~02) (1.738E—01)
¥a - —5.976E—-02 - —2.896E — 01
- (8.689E —02) - (1.414E—-0D)
¥, - —2.050E - 01 - -
- (7.468E — 02) - -

Panel B: Diagnostics ( p-values with the exception of the log likelihood)

Statistic S&P500 NIKKE! FTSE TSEC
Log likelihood 11123.780 12896.733 9787.618 11536.110
value

ARCH test 0.901 1.000 0.988 0.972
Sign bias test 0.663 0.750 0.148 0.554
Neg. sign bias test 0.031 0.695 0.290 0.459
Pos. sign bias test 0.346 0.646 0.584 0.367
Joint test 0.198 0.965 0.653 0.357

* The table reports parameter estimates and standard diagnostics for New York's S&P500, Tokyo's
NIKKEI, London’s FTSE and Toronto's TSEC indices on daily data 1969-1979 for the model listed
below.

Returns: R, = ay +a R,_ |+ €, € ~ (0, a'(: )

EGARCH: Ino,” = a + £/, B, Ina”  + L y[8le /o), +Ne/a),_ |=y2/7]

estimates are consistent with those generally reported in the literature. In particu-
lar, volatility appears nearly integrated (though in all cases IGARCH restrictions
produced models inferior to the unrestricted GARCH). Not surprisingly, the
Ljung—Box ARCH Test results show GARCH removing symmetric ARCH effects
in-sample for all data series. However, the four sign bias tests reveal significant
uncaptured asymmetric ARCH in-sample for 1969-1979, with several p-values
below 0.05 in the various indices.
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Table 4

GIJR estimation resuits and in-sample diagnostics. January 1, 1969 to December 31. 1979 ¢

Panel A: Parameter estimates (Bollerslev—Wooldridge robust standard errors)

Parameter S&P500 NIKKEI FTSE TSEC

dy 1.455E - 06 2.256E—04 — 1.600E — 04 2.565E—04
(1.360E—04) (1.563E —04) (2411E~04) (1.141E—04)

a, 2.391E-01 1.734E—01 T30IE-02 2.869E - Ot
(1.897E—-02) (2.347E-02) (2.076E —02) (2.480E - 02)

a 4.519E-07 7.832E—06 2.350E—06 5.301E-07
(1.493E~07) (2.345E~06) (8.782E - 07) (2.271E-07)

B, 9.500E — 01 5.492E-01 9.168E -0l 9.419E -0
(8.943E—03} (8.717TE~02) (1.438E—-02) {1.564E—02)

Y 2402E-03 4.684E - 03 1.863E-02 2.532E- 0t
(7.468E —03) (2.200E-02) (1.265E—-02) (6.074E —02)

Y- - 2.338E-01 - —2.077E-01
- (1.266E—01) - (5.405E —02)

&, 8471E-02 JMIE-QI 4.949E—-02 3.848E—03
(1.670E—02) (9.282E —02} (1.80IE —02) (2.012E - 02)

Panel B: Diagnostics ( p-values with the exception of the tog likelihood)

Statistic S&P500 NIKKEI FTSE TSEC

Log likelihood value 11124.268 12849.449 9797.037 11528.968

ARCH test 0.691 1.000 0.975 0.907

Sign bias test 0517 0.753 0.064 0.177

Neg. sign bias test 0.056 0.850 0.198 0.171

Pos. sign bias test 0.279 0.772 0416 0.616

Joint test 0.265 0.987 0.507 0.536

* The table reports parameter estimates and standard diagnostics for New York's S&P300, Tokyo's
NIKKEIL London's FTSE and Toronto’s TSEC indices on daily data 1969-1979 for the model listed
below.

Returns: R, =a,+a R, |+ €: € ~0.07),

. 2 _ ) 2 2 A
GJR (T: =a +\':1/:| B:Uf—r+:=r/;|7,'ermr+Z£:|(bl\1)r'k€:f I

I if e, <0.

D=0 it ¢, 20

Table 3 reports results for EGARCH from Eq. (4). with a; and «, again being
the intercept and AR(1) coefficient for the return Eq. (1). In-sample 1969-1979,
EGARCH passes all the ARCH and sign tests for uncaptured volatility at the 5%
level, except the Negative Sign Bias Test for the S&PS500. As in Engle and Ng
(1993), we find the asymmetry parameter § to be significantly negative in the
NIKKEI. However, in all other indices, & is not significantly different from zero,
suggesting that EGARCH may not be the preferred specification to model
asymmetric effects in the S & P500, FTSE and TSEC.

Table 4 reports results for GJR from Egs. (5) and (6). Most noteworthy is the
observation that in the S& P500, NIKKEI and FTSE the asymmetry parameter ¢
is significantly positive, thereby confirming that negative return innovations lead
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to more volatility than positive return innovations in these countries. The GJR
parameter is not statistically significant in the TSEC, but the Engle—-Ng tests
nevertheless reveal that the addition of the GJR term removes all significant traces

Table 5
ANN estimation results and in-sample diagnostics. January 1, 1969 to December 31, 1979 *

Panel A: Parameter estimates (Bollerslev—Wooldridge robust standard errors)

Parameter S&P500 NIKKEI FTSE TSEC

g 1.331E-05 2332E-04 - 1.457E~04 2.157TE—04
(1.351E—-04) (1.263E—04) (2.374E—04) (1.178E—-04)

a, 2433E-01 2.003E 01 7.786E 02 3.114E-01
(1.900E - 02) (2.048E—02) (2.043E—-02) (2.429E-02)

o 5.687E— 06 —8.685E—-05 —3.685E—06 3.568E - 06
(2.284E - 06) (3.923E-05) (1.684E — 06) (8.644E — 07}

B 9.510E-01 7.157E - 01 9.136E—01 9.481E-—-01
(8.400E - 03) (4.027E - 02) (1.486E —02) (1.525E—02)

Y —1.856E-03 —5223E-02 9.552E-02 2.566E—01
(7.515E~03) (2.992E-02) (1.702E—02) (5.850E — 02)

Y - —3.775E-02 - —2.059E-01
- (2.796E ~02) ~ (5.248E - 02)

&, 8967E - 02 3.084E - 01 - —3982E-02
(1.667E - 02) (7.049E —02) - (2.251E-02)

£ —1.353E-01 —2576E—04 —2.678E—05 1.508E - 01
(5.770E—02) (1.221E-04) (R.727E —06) (3.829E-02)

& - 9.884E — 05 - -
- (6.474E—05) - -

&y - 1.059E — 04 - -
- (5.113E-05) - -

Panel B: Diagnostics { p-values with the exception of the log likelihood)

Statistic S&P500 NIKKEI FTSE TSE

Log likelihood 11127.538 12896.835 9798.147 11542.716

value

ARCH test 0.714 1.000 0.953 0.826

Sign bias test 0.435 0.262 0.187 0.268

Neg. sign bias test 0.059 0.491 0.295 0.134

Pos. sign bias test 0.276 0.699 0.602 0.760

Joint test 0.203 0.869 0.828 0.228

* The table reports parameter estimates and standard diagnostics for New York's S&P500, Tokyo's
NIKKEI, London’s FTSE and Toronto’s TSEC indices on daily data 1969-1979 for the model listed

below.

Returns: R, =a,+a R,_ +€: € ~(0.0°)
ANN: o =a+L/ B'(]"% i +>::_,: 17/'5':7/ X B D L &AL

1 if
0 if
WA ={1texplA, gy +Z5_,

Dr«k =

€,_, <0.

€, =20

(Z7.

w=

Ay g 5y )] I

L_a=le_, —E(E))/E(V/e—l): A ™ uniform{ — 1. + 1].
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of asymmetric ARCH as intended. Indeed, GJR is the only traditional model to
remove all evidence of asymmetric volatility, at the 5% significance level, in every
index over the 1969-1979 sample period on which model specifications were
selected. In this respect, GJR seems preferred to our EGARCH benchmark as a
model for asymmetric volatility.

Table 5 reports results for ANN from Egs. (7)—(11). joint with Eq. (1). First
note that in the S&P500. NIKKEI and TSEC indices where ¢ GJR terms are

Panel A, GARCH Panel B, EGARCH
P—Value P Value

N ta e tny 010
: N, A | N 009
: 0.08}
0,061 14+
0.04 :

0.0814 -
0.2}
0.01

80 81 82 83 84 85 86 87 88 89 90 91 80 81 82 83 84 85 86 87 88 89 90

Date Date
otk Joint Test S Neg. Sign Bias Yook Joint Test &¢©Neg. Sign Bias

atd

Panel C, GJR Panel D, ANN

P —Value P—Value

ool k| | omif
008} e 00| | 1
007} - oorlf- .}
0.04} |- ’ ‘ 0.04f -
002 002f
80 81 82 83 84 85 85 8783 89 90 A 80 81 82 83 84 85 86 £7 83 89 90 91
Date Date
#réett Joint Test ©9¢Neg. Sign Bias #éck Joint, Test $64Neg. Sign Bias

Fig. 2. S&PS00 Engle-Ng sign bias test results.
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required. the ¢ terms retain their former significance and assume values roughly
equal to those from the base GIR model in Table 4. This suggests that, in these
indices, the ANN terms are capturing asymmetric volatility effects in addition to —
not instead of — effects captured by GJR. Conversely, in the FTSE, the inclusion
of ANN terms removes the necessity for GJIR terms. (Indeed, in the FTSE the only
difference between the model specifications in Tables 4 and 5 is that a GJR term
augments a simple GARCH(1, 1) in Table 4, while a single ANN term augments

Panel A, GARCH Panel B, EGARCH
P-Value P~ Value
010 T T 010 7T T
0.09 | 0.09
0.081 0.08
0071 0.074~
0.06 0.06
0.05 0.06
0,043~ 0.0 F - ibefdods ;
0.03 0.08
0.02 0.02
0.01 ‘ : 0.01
0.00 K0 5 0,00 i R o
80 81 82 83 84 85 86 87 88 89 90 91 80 81 82 83 84 85 86 87 88 89 90 91
Date Date
¥ Joint Test 969 Neg, Sign Bias #rivk Joint Test ©9©Neg. Sign Bias
Panel C, GJR Panel D, ANN
P—Value P -Value
0.09¢- 009}
0.08+ 0081
006§ 0.06
0.04} 0.04}

002} 002}

0.01 0.01
80 81 82 83 84 8 86 87 88 89 90 91 80 81 82 83 84 85 86 87 88 89 90 91
Date Date
##0# Joint. Test ©06Neg. Sign Bias o Joint Test ©69Neg. Sign Bias

Fig. 3. NIKKEI Engle-Ng sign bias test results.
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Panel A, GARCH Panel B, EGARCH
P —Value P - Value
0.09% 0.09 b
0.08 008} -
0.07 007}
0.06 0061~

0.06 0.06
0.04 0.043-+ -
0.03 715 S -

0.2} 002} -

0.01 0.01}
80 81 82 83 84 85 86 B7 83 89 90 91 80 81 82 83 84 85 86 87 88 89 90 91
Date Date
### Joint, Test $6oNeg. Sign Bias ¥irk Joint, Test $90Neg. Sign Bias
Panel C, GJR Panel D, ANN
P—Value P-Value
0.08} 0.08
0.07 : 007}
0.065 ‘ 0,06}
005} 4 fAL : 006}
0.04} 004}
0,08+ 0.03} -

0.2 002

0.01}- 0.01
80 81 82 83 84 85 86 87 88 89 90 91 80 81 82 83 84 85 86 87 88 89 90 91
Date Date
#rivk Joint. Test ©66Neg. Sign Bias ~ ***Joint Test ©%0Neg. Sign Bias

Fig. 4. FTSE Engle—Ng sign bias test results.

the same simple GARCH(1, 1) in Table 5, a distinction whose importance will
become evident in Figs. 2-5 below.) The log likelihood vatue for every index’s
ANN model is also higher than the log likelihood value for every alternative
model, including GJR. This suggests to us that, at least on the 1969-1979 data,
ANN is generally preferred to GARCH, EGARCH and GIJR for its ability to
capture both asymmetric and symmetric ARCH effects in sample.
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Panel A, GARCH Panel B, EGARCH

P—Value P—Value

0.09; | 000} |}
0.08}1- 0.08} |-
0.07}| 007}
0.06{{ ‘ 0067 O B
oatl] - o]
0.014 -+ 0.01 Lo E

80 81 82 83 84 85 86 87 88 89 90 A1 80 81 82 83 84 85 86 87 88 89 90 91
Date Date
e Joint, Test 566 Neg. Sign Bias  *’*Joint Test 660 Neg. Sign Bias

Panel C, GJR Panel D, ANN

P—Value P—Value

0.09} Y
00T} oot
0.033 - - : o 0.08f i
0.02 T e 0.021-
00Lf IR 001}
80 81 82 83 84 85 86 87 88 89 90 91 80 81 82 B3 84 85 86 87 88 89 90 91
Date Date
#oie Joint Test 490 Neg. Sign Bias #rivk Joint Test 960 Neg. Sign Bias

Fig. 5. TSEC Engle—Ng sign bias test results.

Table 6 contains summary statistics on the in-sample conditional variances. &,
and standardized returns, € /4d,, from our four models and four data series. If
these models were producing conditional variances that yielded standard normal
standardized returns then, for the standardized returns, skewness would be zero
and kurtosis would be 3. As can be seen from Table 6, all the models produce
skewed and leptokurtic distributions, though ANN generally comes closest to
normality (e.g., in three of the four indices ANN produces the lowest standardized
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Table 6
Summary statistics on in-sample fitted variances and returns. JTanuary 1, 1969 to December 31, 1979 *

Method Fitted conditional variance Fitted standardized returns

Mean X 107 Std. dev X10™% Skew  Kurtosis  Std dev  Skew Kurtosis
Panel A: S&P300

Raw data  0.691 1.504 7.305 86.345  1.000 0.352 5743
GARCH  0.689 0.550 2.599 10986 1.000 0.084 3483
EGARCH 0.672 0513 2426 9.746  1.000 0050 3382
GIR 0.676 0.521 2.233 8.251  1.000 0048  3.387
ANN 0.676 0.513 2.093 7.737  1.000 0.051 3326

Panel B: NIKKEI

Raw data  0.726 2.860 14.888 308.63 1.000 —-1.001 16526
GARCH 0.823 1.593 8.091 87.118 1.000 —1.297 15.184
EGARCH 1.008 13.321 50.503  2640.7 1.000 —1449 18222
GJR 0.826 1.788 9.394 116.71 1.000 —1.312 16700
ANN 0.697 1.039 9224 126.98 1.000 —1.021 11.602
Panel C: FTSE

Raw data  2.333 5.287 6.426 61.482  1.000 0.240  6.141
GARCH 2.312 2.333 3.405 17.991  1.000 0.046  3.550
EGARCH 2261 2.007 2.702 12.074  1.000 0.074  3.620
GJR 2.294 2.199 2.848 12.850 1.000 0.059 3524
ANN 2.388 2.677 3.660 20.135  1.000 0.054  3.584
Panel D: TSEC

Raw data  0.545 2.109 13.142 234.86 1.000 —0.569 16.003
GARCH 0.544 0.774 9.033 139.95 1.000 0.160  7.524
EGARCH 0.500 0.672 19.156 62849  (.999 0.307 8.930
GJR 0.544 0.775 9.077 141.18 1.000 0.159 7525
ANN 0.504 0.633 8.758 132.88 1.000 0.181 6.956

* The table reports summary statistics on the in-sample fitted conditional variances. & . and standard-
ized returns, & /&, for New York's S&P500, Tokyo's NIKKEL, London’s FTSE and Toronto's
TSEC indices on daily data 1969-1979 (with 1969 used as pre-sample conditioning information) for
the models listed at the bottom of Table .

return kurtosis). Only EGARCH is ill behaved, occasionally producing conditional
variances and /or standardized returns with more skew and/or kurtosis than the
raw data. This confirms the Engle and Ng (1993, p. 1171) conjecture that
EGARCH may be too extreme in the tails for some data series and supports our
favoring of ANN over other models, at least in sample.

S. One-step-ahead recursive in-sample diagnostics

Before proceeding to out-of-sample testing, we first compute and evaluate
in-sample the updated models used to obtain the one-step-ahead out-of-sample
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forecasts on which Section 6’s out-of-sample tests will be based. To do this, we
first estimate parameters for each model on the January 1, 1969 to December 31,
1979 data and produce an out-of-sample forecast of € /&, for the first trading day
of 1980. We then re-estimate the model parameters on data up to and including the
first trading day of 1980 — but stilt using the original specifications listed in Table
I — to obtain a new set of updated parameter values and in-sample diagnostic test
results, and to produce a one-step-ahead out-of-sample forecast of € /4, for the
second trading day of 1980. We then repeat this estimation—diagnostic-forecast
process using data up to and including the second trading day of 1980, then the
third day. and so forth, until we have obtained recursively updated parameter
estimates and one-step-ahead out-of-sample volatility forecasts for each model and
stock index for every trading day from January 1, 1980 to December 31, 1990.

We obviously cannot report the recursively updated parameter estimates and
in-sample diagnostic results in the same detail as Tables 2—5 above. However, the
results of the Engle—Ng Tests are summarized in Figs. 2-5. Along the bottom of
each panel we report the last date in the recursively updated sample; e.g., 19XX.
The vertical axis reports the p-values from the tests performed on that sample. A
p-value of . XX therefore signifies rejection of the null hypothesis of no uncap-
tured volatility at the XX % significance level for the particular Engle—Ng test in
question. For viewing simplicity, and since test results normally change little from
day to day, we only plot test results for the last day of each quarter. To avoid
clutter, we also only report results for the Negative Sign Bias Test (diamonds) and
the Joint Test (stars) since these tests are failed much more often than the Basic
Sign Bias Test and Positive Sign Bias Test.

Fig. 2 reports results for the S&P500, with Panel A giving p-values for
Engle-Ng tests on GARCH ¢€,/§, standardized residuals, Panel B for EGARCH,
Panel C for GJR, and Panel D for ANN. From Panel A we see that GARCH fails
to capture negative asymmetric effects in the S&PS500 during 1980-1983 and
again from the Crash of 1987 to the end of the sample. EGARCH performs
slightly better than GARCH, with some recovery following the 87 crash. GJR
does better than either standard model at capturing the conditional volatility of
stock returns prior to the 1987 Crash and recovers more quickly following the
Crash. In the S&P500, the performance of ANN is roughly similar to GIR, with
ANN failing less significantly than GJR in the early 1980s but more significantly
during the late 1980s.

Results in Fig. 3 reveal essentially the same ranking for the NIKKEI as was
observed in the S &P500: GARCH performs worst. EGARCH next, and GJR and
ANN about the same (if we had also plotted the Basic Sign Bias results then ANN
would be clearly favored as GJR fails the Basic Sign Bias Test during the early
1980s while others do not). However, while in the S&P500 the quality progres-
sion from GARCH to ANN is gradual, in the NIKKEI there is a clear split
between the linear GARCH model and nonlincar EGARCH, GJR and ANN
models. In particular, the three nonlinear models are easily able to capture
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NIKKEI volatility during the 1987 crash, while linear GARCH fails miserably for
almost the entire sample. This suggests that nonlinear effects may be particularly
important in the NIKKEI.

Fig. 4 reports results for the FTSE. This figure presents the clearest example of
the progression of in-sample fit from GARCH through ANN, with ANN being the
only model that does not fail at least once at the 5% significance level. Perhaps the
most interesting feature of the FTSE results is the observation that the ANN’s
pertormance on the Engle—Ng tests is very similar to that of EGARCH, while GJR
is closer to GARCH. Thus, while in the S& P500 ANN mimics GJR more closely
than any other model with respect to Engle—Ng performance. in the NIKKEI ANN
mimics EGARCH more closely than any other model. This finding reveals
something of the ANN’s flexibility to fit a wide variety of interesting specifica-
tions; when GJR is best ANN looks something like GJR. but when EGARCH is
best ANN looks more like EGARCH. This is supported by Tables 1 and 5 where it
is revealed that, in the FTSE, ANN selects a model specification with no GJR
term, while in the other indices a GJR term is included.

Finally, Fig. 5 plots results for the TSEC. In this index GJR is clearly the most
successful at passing the Engle~Ng tests, although ANN’s failure occurs only in
during 1990. This failure is no doubt due in part to the fact that we use the same
mode] specification estimated on 1969~1979 data for the entire 1980—1990 period
(though parameter estimates are of course updated each day) and thus the farther
away one gets from the specification period the less well the model might be
expected to perform. More significant is the observation that EGARCH in
particular has trouble capturing the 1987 crash in the TSEC, just as all the
volatility models had trouble capturing the 1987 crash in the S&P500. Con-
versely, none of the nonlinear models have particular trouble capturing the stock
market crash in the NIKKEI or FTSE. This finding suggests that there is a
fundamental difference in the unexplainable asymmetric volatility effects of the
'87 crash in the various markets we study, as seen through the eyes of our various
volatility models: New York’s S&P500 seems affected most, Toronto’s TSEC
second, Tokyo’s NIKKEI third, and London’s FTSE least.

6. Forecasting volatility out of sample

Thus far, all our comparisons and evaluations of the various models under
consideration have been based on in-sample diagnostics. However, as noted by
authors such as Pagan and Schwert (1990), the true test of a volatility model is its
ability to forecast the conditional volatility of stock returns out of sample. This is
especially true when evaluating seminonparametric models since there is always
the chance that superior in-sample performance might be the result of overfitting
the data. Indeed, in their comparison of various volatility models using pre-war US
data. Pagan and Schwert (1990) found serious problems associated with substantial
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Table 7
Summary statistics on one-step-ahead out-of-sample variance and return forecasts. January 1, 1980 to
December 31, 1990 *

Method Forecasted conditional variance Forecasted standardized returns

Mean X 1077 Stddev x10~' Skew Kurtosis  Std Dev  Skew Kurtosis
Panel A: S&P500

Raw data  1.230 9.532 42,679 20427 1.000 —2.575 61.484
GARCH 1.143 2.881 13.103 19341 1.060 —1.042 15502
EGARCH 0.944 1.159 12.623 24143 1.105 —1.544 23425
GIR 1.193 3.607 13.985 22027  1.059 —0.830 12.097
ANN E.196 3.688 14.3603 23271 1.059 —0.790 11.626

Panel B: NIKKEI

Raw data 0936 6.287 29380 1034.0 1.000 —0499 46.154
GARCH 0.929 3.194 15.931 34195 1.053 —1.024  13.056
EGARCH 0.806 6.127 51.224 27516 1.076 —0.761 0.816
GJR 0912 3.533 18.525 451.06  1.066 -0.728 8.885
ANN 0.850 3231 20.637 580.83 1.076 -0.735 8.758
Panel C. FTSE

Raw data 1.200 4.017 22.531 663.96 1.000 —0901 12.423
GARCH 1.244 1.183 10.147 137.03 0977 —0.850 11.388
EGARCH 1.211 0.932 9.056 128.04 0.989 —0.789 10.518
GIR 1.257 1.387 11.423 16479 0978 —0811 11.147
ANN 1.270 1.705 14.040 240.56  0.980 —0.737 10.198

Panel D: TSEC

Raw data  0.762 3932 22.097 61625  1.000 —0.418  27.665
GARCH 0.770 1.768 13489 24948 1017 —0.645 8.258
EGARCH 0.687 1.106 12497 209.68 1.017 —0.602 7954
GJR 0.772 1.792 13242 23053 1.016 —0.647  8.235
ANN 0.765 1.789 13.521 23771 1.017 —0.666  8.271

The table reports summary statistics on the one-step-ahead out-of-sample forecasted conditional
variances. &,°. and standardized returns. € /G, for New York's S&P500. Tokyo's NIKKEL
London™s FTSE and Toronto’s TSEC indices on daily data 1980-1990 for the models listed at the
bottom of Table I,

overfitting in the seminonparametric models they investigated. '* For this reason it
is especially interesting to note in the tests below that our ANN model produces
superior results without overfitting the data.

" As noted above, we also investigated the Flexible Fourier Form model using our four-country data
and found substantial overfitting problems in our data. confirming the nature of Pagan and Schwert’s
results.
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Table 7 contains summary statistics on the one-step-ahead out-of-sample condi-
tional volatility forecasts. &7, and the one-step-ahead out-of-sample forecasted
standardized residuals, & /4&,. from January 1, 1980 to December 31. 1990, as
obtained with the updating-forecasting procedure described at the beginning of
the previous section. Panels A, B, C and D present results for the S& P500,
NIKKEI, FTSE and TSEC, respectively (as one would expect, the period sur-
rounding the 1987 Crash is the source of the increased skew and kurtosis in the
raw data over that from Table 6.) The most significant finding from Table 7 is the
revelation that the ANN models do not overfit the data, as evidenced by the fact
that ANN’s volatility forecasts are not excessively variable. Indeed, in three of the
four indices ANN produces the lowest standardized return kurtosis of any model.
Conversely, EGARCH produces a forecasted conditional variance that has kurtosis
even greater than the NIKKEI raw data, suggesting that EGARCH may not be a
suitable model for the conditional volatility of the NIKKEI.

To evaluate the out-of-sample forecasting performance of each model relative
to the other models, we conduct a Chong and Hendry (1986) forecast encompass-
ing test. '© To formalize the notion of forecast encompassing, note that the
forecast error from a correctly specified model has a conditional first moment of 0
given any conditioning information available to the forecaster. Thus, given two
different models estimated on the same data, Model ;’s forecast error should be
orthogonal to Model k’s forecast provided that Model j accurately fits the data.
Provided that Model j does accurately fits the data, conditioning on the forecast
from Model & should theretfore not help to explain any of Model ;s forecast
crror.

Model ;j encompasses Model k if Model j can explain what Model & cannot
explain, without Model & being able to explain what Model j cannot explain. The
Chong and Hendry (1986) encompassing tests are therefore based on a set of OLS
regressions of the forecast error from one model on the forecast from the other
model. Thus, with (&7, — 6,2) being Model ;s forecast error and &, being

16 P - . B
In addition to the encompassing tests reported below several other tests were also investigated. For

example, we conducted comparisons by mean squared forecast error and mean absolute forecast error.
MSFE and MAFE comparisons do reveal a slight preference for ANN over other models. however,
these results do not allow formal comparisons of significant difference and are considerably less
informative than the encompassing tests. MSFE and MAFE results are therefore not reported here due
to space constraints. though they are available from the authors. We also investigated use of the
Diebold and Mariano (1993) test for predictive accuracy. However. on conducting a Monte Carlo
analysis of the test’s size and power properties for our particular model comparisons. we found that the
Diebold—Mariano test had low power relative o the encompassing tests and a significant size bias,
Because of this, and since results from the Diebold—Mariano tests we conducted generally support
results from the encompassing tests in any case. we do not report the Diebold—Mariano test results
here. Finally. multi-period forecast comparisons were also considered but not employed due to the
great difficulty in their implementation with nonlinear models.
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Model k's forecast, we test for significance of the 8 parameter in the regression
in Eq. (12):

(é\rz._f - &ri) =gy + Bj.ko-r.zk + VI.J (]2)
in which » is a random error, "/

We first regress the forecast error from Model ; on the forecast from Model %,
as in Eq. (12), to obtain the estimated coefficient E} . We then regress the forecast
error from Model & on the forecast from Model ; to obtain B,( o If B, , 15 not
significant at some predetermined level, but 3; ; is significant, then we reject the
null hypothesis that neither model encompasses the other in favour of the
alternative hypothesis that Model j encompasses Model k. Conversely, if Bk ¥
not significant, but B/.k is significant, then we say that Model & egcompasses
Model j. If both B;, and B, ; are significant, or if both B, and B; ; are not
significant, then we fail to reject the null hypothesis that neither model encompass
the other. Multicollinearity can lead to both estimated coefficients being insignifi-
cant, while sufficiently nor-overlapping information sets can lead to both esti-
mated coefficients being significant.

Since the encompassing test has an easily derivable distribution when applied to
the out-of-sample data. but not when applied to the in-sample data, we present
only out-of-sample encompassing results in Table 8. As before, panels A, B, C and
D report the S&P500, NIKKEI, FTSE and TSEC, respectively. The name of the
dependent variable from (12) is listed down the left side of the table, while the
independent variable is listed along the top. The entries in Table 8 are thus robust
p-values on B from Eq. (12) with the left variable regressed on the top variable.
P-values less than 0.05 therefore reveal that the forecast from the model listed
along the top of the table explains, with 5% significance, the forecast error from
the model listed down the left side of the table and thus that the model listed down
the side cannot encompass the model listed along the top, at the 5% level. To
isolate the effects of the 1987 Crash, we report results from the full 1980-1990
sample as well as the pre-Crash subsample.

? Another way to think of this test is to consider the regression &’ =+ B, LG+ B, . 0 o,
and consider testing the null that ﬁ = 0. ﬁ ‘¢ = 1. In this framework one could then add forecasts
from other models as additional independent variables and test the significance of one against all the
others. Unfortunately, multicollinearity problems make such a test impractical in our application. It
should be noted that Chong and chdry (1986) consider only pairwise comparisons and restrict
a,, =0ie. @fl = B;s G5 +(1 - B.. 4. )+ v, ; and test the null that B, , = 0. We found that all our
model’s out-of-sample forecast errors were somewhat biased from 0 and hence restricting a;;=0led
invariably 1o rejections. While finding all forecast errors to have a non-zero mean is of some interest,
we decided to present encompassing tests that reveal failures in modelling movements of the dependent
variable, not level effects. We therefore do not restrict «; = 0 in our tests. One could potentially also
consider measures for “the observed outcome’ other than 83 s in Lopez (1995).
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Table 8

Tests for out-of-sample forecast encompassing robust p-values on 3, from the regression (€f‘, - ('rf,)
- 2 a ’

- aj,f. + Bj‘kol,k + vr,/

January 1, 1980 to December 31, 1990 January 1, 1980 to September 30. 1987

Forecast error Forecast ¢,%, from | Forecast &% from |

(&, -6 ) ftom | GARCH EGARCH GIR ANN GARCH EGARCH GJR  ANN

Panel A: S&P500

GARCH - 0.888 0327 0251 - 0.966 0.388 0.334
EGARCH 0.011 - 0.002 0.002 0.686 - 0.597 0.596
GJR 0.952 0.722 - 0.722 0495 0.893 - 0.215
ANN 0.956 0.897 0777 - 0.312 0.763 0.147 -

Panel B: NIKKEI

GARCH - 0.001 0.002 0001 - 0.009 0.195 0.052
EGARCH 0.127 - 0.042 0021 0.365 - 0.944 0.589
GJR 0.308 0.037 - 0.076  0.562 0.258 - 0.584
ANN 0.236 0.063 0.187 - 0.617 0.547 0.776 -
Panel C: FTSE

GARCH - 0.288 0.351 0610 - 0.015 0.020 0.022
EGARCH 0.626 - 0.7 0.654 0.006 - 0.003 0.006
GIR 0.270 0.229 - 0.369  0.039 0.017 - 0.025
ANN 0.333 0.295 0.264 - 0.112 0.076 0072 -

Panel D: TSEC

GARCH - 0.413 0.205 0.190 - 0.229 0.084 0.069
EGARCH 0.888 - 0.736  0.651 0.144 - 0.128 0.096
GIR 0.277 0.420 - 0.203  0.098 0.232 - 0.070
ANN 0.553 0.711 0463 - 0.365 0.610 0331 -

a7

* The table reports robust p-valaes on B, from the OLS regression: (e}, — a7 )=a,, + B, a5+
v, ;. where &7 is model k's one-step-ahead out-of-sample forecasted variance and (&7, — &) is
model j's one-step-ahead out-of-sample forecast error for New York's S&P500. Tokyo's NIKKEIL
London’s FTSE and Toronto’s TSEC indices on daily data 1980-1990 for the models listed at the

bottom of Table 1.

Consider first Panet A; the S&PS500. P-values less than 0.05 along the
EGARCH row in the 1980-1990 data reveals that the GARCH, GJR and ANN
volatility forecasts all explain part of EGARCH’s forecast error from 1980-1990.
Conversely, the absence of any p-value less than 0.05 in the EGARCH column
reveals that the EGARCH volatility forecast cannot explain the forecast errors
from GARCH. GJR or ANN. Thus, we conclude that GARCH, GJR and ANN all
encompass EGARCH at the 5% level in the S&P5S00 from 1980-1990. The
absence of any p-values less than 0.05 in the GARCH, GJR and ANN rows from
19801990 further reveals that none of these models’ forecast errors can be
explained by other models’ forecasts and thus that GARCH, GJR and ANN are all
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not encompassed in the 1980-1990 data. In other words, in those situations where
GARCH. GJR and ANN fail to forecast S & P500 volatility correctly, this failure
cannot be accounted for by the other models under consideration. The additional
observation that no modet encompasses any other in the 1980:01-1987:09 S & P500
subsample — i.e.. there are no p-values less than 0.05 in any position 1980:01—
1987:09 in Panel A of Table 8 — suggests that EGARCH’s encompassing by the
other models in the 1980-1990 S&P500 sample is due largely to EGARCH’s
failure to adequately capture S & P500 volatility effects after the 1987 Crash.

Next consider results for the NIKKEI 1980-1990, reported on the left side of
Panel B. The row of p-values less than 0.05 for GARCH reveals that the GARCH
forecast error is explained by EGARCH. GJR and ANN. Conversely, the column
of p-values greater than 0.05 for GARCH reveals that the GARCH forecast cannot
explain any other models” error. Thus, GARCH is encompassed by all other
models. (This is. of course. not terribly surprising given the very poor in-sample
performance of GARCH relative to other models post 1985 in Fig. 3.) For the
NIKKEI 1980-1990 we also see from the EGARCH row that EGARCH's forecast
error is explained by both GJR and ANN and. from the EGARCH column, that
EGARCH’s forecast explains GIR’s error but not the error from ANN, at the 5%
significance level.

From the EGARCH-GJR comparison in the NIKKEI we therefore learn that
GJR and EGARCH each explain a significant portion of the other’s forecast error
and thus that neither model encompasses the other. From the ANN comparison to
EGARCH. as well as to GARCH and GJR. we also learn that the ANN forecast
error is the only error that is not explained by any other model. at 5%. ANN
therefore encompasses EGARCH, as it did GARCH. In summary. EGARCH, GJR
and ANN all encompass GARCH. but only ANN encompasses EGARCH. GJR
and ANN are not encompassed in the 1980--1990 NIKKEI at the 5% significance
level. though ANN does encompass GJR at 10%. Thus, ANN encompasses all the
other models in the NIKKEI at the 19, 5% or 10% levels. The generally higher
p-values in the 1980:01-1987:09 pre-Crash subsample suggests that the inability
of GARCH, EGARCH and GJR to fully account for the Crash of 87 in their
out-of-sample forecasts is largely to blame for this outcome.

Panel C of Table 8 reports results for FTSE. The absence of any p-values below
0.05 in the 1980-1990 sample reveals that no forecast from any model explains
the error from any other model over the entire decade that includes the Crash.
However, in the pre-Crash subsample 1980:01-1987:09 ANN again encompasses
all the other models at the 5% level of significance. Indeed. ANN is the only
mode] that encompasses any other and is also the only model that is not
encompassed. In other words. ANN's one-step-ahead out-of-sample forecasts can
explain variance effects not captured by the other models. while none of the
traditional ARCH models can significantly account for ANN's volatility forecast-
ing errors. This finding is consistent with results from Fig. 4. which plots the
recursively calculated in-sample Sign Test p-values for the various models applied
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to FTSE data. Note that, from 1980-1987, ANN never fails any of the Sign Tests.
while all the other models do fail — at 5% or less — during this period.

Finally, Panel D of Table 8 reports results for TSEC. Over the entire sample
1980—1990 no model encompasses any other. However, from the right half of
Panel D we see that ANN again encompasses every other model at the 10%
significance level in the pre-Crash subsample 1980:01-1987:09. Together with
previously articulated results from Panels A, B and C, Table 8 therefore reveals
that ANN often encompasses traditional models in terms of out-of-sample fore-
casting ability. Furthermore, ANN is the only model that is never encompassed
itself. Results from the forecast encompassing tests therefore lead us to conclude
that our new ANN model does significantly better than traditional models at
capturing the conditional volatility of stock returns. This result is strongest in the
out-of-sample encompassing tests, which are arguably the most important of any
we have considered.

7. Summary and conclusions

In this paper we have introduced a new nonlinear seminonparametric model for
conditional stock volatility and have compared its in- and out-of-sample perfor-
mance with that of other popular volatility models in four international stock
market indices: S&P500, NIKKEI, FTSE and TSEC. In-sample comparisons
reveal that GARCH most often fails to capture the empirical regularity that past
negative return innovations lead to more volatility than positive return innovations.
This is true for all indices studied. though the results of the Engle—Ng Sign Bias
Tests plotted in Figs. 2—5 suggest that asymmetric effects are more prominent in
the NIKKEI before 1987, and in the S&P500 after 1987. than in either the FTSE
or TSEC. In-sample summary statistics from Table 6 further reveai that EGARCH
may not be an appropriate model for the NIKKEI since it sometimes produces
volatility estimates that exceed the variance of the squared return innovation. In
terms of log likelihood (Tables 2-5). ability to remove excess skew and kurtosis
(Table 6) and standard in-sample diagnostics, such as the Engle-Ng Sign Tests
whose p-values are reported in Figs. 2-5. the GJR model seems more able to fit
the asymmetric heteroskedasticity in the data than either GARCH or EGARCH.

The best performing model of all appears to be our new ANN model. From the
ANN parameter values reported in Table 5 we see that, in S&P500, TSEC and
NIKKEI, the ANN terms capture asymmetric volatility effects in addition to — not
instead of — effects captured by GJR. Conversely, in the FTSE. the inclusion of
ANN terms removes the necessity for GJR terms. Indeed, from we see some
evidence that the highly flexible ANN behaves more like EGARCH in the FTSE
and more like GJR in the S & P500. Results from the out-of-sample tests in Table 8
also show that ANN is the only model whose one-step-ahead out-of-sample
forecasts encompass forecasts from other models. The statistics in Table 7 confirm
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that, unlike many seminonparametric forms, the ANN’s superior performance in
this respect is not the result of overfitting the data. This suggests to us that, at least
on the 1969-1990 data, ANN is preferred to more traditional ARCH-type models
for its ability to flexibly capture asymmetric and symmetric volatility in a variety
of international stock markets.

Finally, a cross-country comparison of our results reveals that there may be
important differences between the processes driving returns volatility in the four
countries we study. For example, Figs. 2-5 reveal that shocks to asymmetric
volatility following the crash of 1987 are difficult to capture in the New York
market, but are less problematic in the Tokyo and London indices. From the
number of lagged terms in the model specifications in Table 1. it also appears that
ARCH effects may be longer lived (i.e. more persistent) in Tokyo than in London,
Toronto or New York. Together, these findings suggest the potential usefulness of
incorporating other types of information in the volatility forecasting information
set. Such an investigation is a subject for ongoing research.
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