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We develop a new procedure to forecast future
casbh flows from a financial asset and then use
the present value of our cash flow forecasts to
calculate the asset’s fundamental price. As an
example, we construct a nonlinear ARMA-ARCH-
Artificial Neural Network model to obtain out-of-
sample dividend forecasts for 1920 and beyond,
using only in-sample dividend data. The present
value of our forecasted dividends yield funda-
mental prices that reproduce the magnitude, tim-
ing, and time-series behavior of the boom and
crash in 1929 stock prices. We therefore reject
the popular claim that the 1920s stock market
contained a bubble.

Many empirical tests of asset price behavior call for
the comparison of an asset's market price to its
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“fundamental” price, defined as the market's expected discounted
present value of future cash flows. Since we cannot observe investors’
true expectations, however, the market price is in practice compared
to the econometrician’s estimate of the fundamental price. Traditional
fundamentals estimation procedures often involve either replacing ex-
pected cash flows with actual cash flows, as in Shiller’s (1981) seminal
study. or assuming that market participants expect future cash flows
to grow at some constant rate, as in the popular Gordon (1962) model.

There is a vast and growing literature that suggests that the prices
produced by traditional fundumentals estimation procedures do not
share important properties with actual stock price data. Perhaps the
most dramatic example is the widely perceived failure of traditional
models to provide fundamental explanations for the type of extreme
price fluctuations observed during supposed “bubble episodes,” such
as the Great Stock Market Crash of 1929, the South Sea Bubble and
the Mississippi Bubble.! Indeed, the difficulty in explaining these rare
but important events has led some economists to assert that asset
price movements are influenced by factors other than cash flow fun-
damentals. the assumption being that the traditional fundamentals es-
timation procedures being employed are sound but that the standard
present value model is at odds with the data. However, there are other
economists who take the opposite approach and argue instead that
the standard present value model is sound but that misspecifications
in traditional fundamentals estimation procedures give the false im-
pression of bubbles in asset prices where there are in fact none.? Thus,
while the first point of view implies that some types of price behavior
can never be explained by fundamentals, the second viewpoint argues
that. if we could only find a well-specified fundamentals estimation
procedure. then the standuard present value model could explain even
the most extreme price fluctuations as fundamental events.

Given the preceding discussion, the purpose of our article is to de-
velop a new methodology for calculating fundamental asset prices.
In particular, we develop a new—and we argue more accurate—
procedure to forecast future cash flows from a financial asset and
to then use the expected present value of these forecasted future
cash flows to estimate the asset's fundamental price. Since traditional
fundamentals estimation procedures seem particularly challenged by

sion of these famous historical events, and a summary of the evidence both for and
against the claim that they reveal bubbles in asset prices. see Garber (1990), Kindleberger (1978),
Shiller (1989), and White (1990).

2 See, for example, Flood and Garber (1994), Flood and Hodrick (1990), and Kleidon (1986). Ackernt
and Smith (1993) also mise questions about the completeness of cash flow data traditionally
employed in volatility studies.
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Figure 1
S&P 500 stock price index
This figure plots the S&P 500 stock price index. See Appendix 1 for data sources,

extreme events, and since the stock boom and crash of 1929 is the
most widely cited example of a stock price bubble for which we have
reliable data. we use the panic of 1929 as a laboratory in which to
compare our new procedure to traditionally employed models.

The extreme nature of the 1920s stock boom and crash is evident
in Figure 1, which plots the S&P 500 stock price index monthly from
1900 to 1934 (data sources are listed in Appendix 1). Notice that,
from 1900 to 1925, the S&P 500 mostly assumed values within the
fairly narrow range of 50 to 80 points and returned to this range after
1932. Between 1926 and 1932, however, the index rose rapidly to
peak at 225 in September 1929 and then crashed with the infamous
October panic.

White’s (1990) summation of existing literature on the crash of 1929
leads him to conclude that the “conventional wisdom” and “most com-
monly accepted version of the boom and crash™ is that an explosive
“bubble” pushed the market price well above the fundamental price
during the late 1920s and that this bubble burst with the 1929 panic.
Our new fundamentals estimation procedure yields the opposite re-
sult. In particular, our econometric procedure—in conjunction with
the present value model—yields fundamental prices that reproduce
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the magnitude, timing, and time-series behavior of the boom and
crash in 1929 stock prices. We therefore reject the popular claim that
the 1920s stock market contained a bubble and instead argue that, at
least in this one case, the standard bubble-free present value model
remains a valid tool for explaining market behavior.

Our procedure for obtaining fundamental prices is as follows. First,
we use dividend data from before 1920 to estimate a nonlinear ARMA-
ARCH model for the time-series behavior of discounted dividend
growth. Second, we use our model, with in-sample data, in 1 Monte
Carlo experiment to produce out-of-sample forecasts of discounted
dividend growth for 10,000 different simulated economies into the (al-
most) infinite future. Third, we calculate the present discounted value
of each of our 10,000 different forecasted dividend streams to obtain
10.000 different possible prices. Finally, the cross-sectional mean of
these 10,000 simulated prices is computed to obtain our estimate of
the market's expected discounted present value of the asset's future
cash flows. and thus the fundamental price.

The purely out-of-sample dividend forecasts from our model are
able to produce a fundamental price series that rises from roughly
the same value as the market price in 1920 to peak at the sume time,
and within 10 points of. the market price in 1929 and then crashes
along with the market price through the early 1930s. Furthermore, on
comparing our fundamental prices to market prices with a number of
statistical tests, we are easily able to reject the hypothesis that mar-
ket prices contain a bubble. Indeed, our dividend forecasts suggest
that, given the information available to market participants living in
the early 1920s, dividends were expected to increase by enough to
warrant the observed rise in stock prices. However, as new informa-
tion arrived in the late 1920s. expectations of future dividends were
revised downward, resulting in the observed crash in prices. We there-
fore conclude that there was not a bubble in 1920s stock prices and
thus that the standard bubble-free present value model is appropriate
for even this most extreme episode.

The remainder of our article proceeds as follows. In Section 1 we
formalize the terms “fundamental price” and “bubble” and demon-
strate that traditional procedures for estimating fundamental prices
erroneously find bubbles in asset prices because traditional models
are misspecified. In Section 2 we present our nonlinear ARMA-ARCH
model and Monte Carlo simulation procedure for forecasting divi-
dends and demonstrate that, when market prices are compared to the
fundamental prices produced by our new procedure, we reject the hy-
pothesis of a bubble in market prices. In Section 3 we provide some
insight into why various elements of our econometric representation
are important for achieving a well-specified model to accurately fore-
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cast dividends and thus why we reject the bubbles hypothesis while
traditional models do not. Section 4 concludes.

1. The Data and its Traditional Interpretations

We begin our investigation by comparing market prices to the funda-
mental prices obtained from traditional models. Such a comparison is
useful because it provides a benchmark against which to compare the
results of our new fundamentals estimation procedure and because an
understanding of why traditional models fail to reject bubbles helps
to motivate the particular approach we employ.

1.1 Defining fundamentals and bubbles

Consider a share of stock whose price is determined at the beginning
of each period and that pays a dividend at the end of each period.
Define D, as the dividend payment made at the end of period ¢, P,y
as the stock’s selling price at the beginning of period t+1,and 1+ r;
as the gross real rate investors use to discount payments received
during period t. The rational time ¢ price of the stock is then given
by Equation (1),

(1)

D, + P,
p,=5,_1{__fu}

1+4+n

in which E;, is the expectations operator conditional on information
available to the market when P, is being determined at the beginning
of period ¢t (i.e., information from the end of period + — 1 and ear-
lier). Provided that the discounted present value of the stock’s price
infinitely far into the future is zero (i.e., there are no bubbles), we can
recursively substitute for future prices in Equation (1) to find that the
fundamental price, PF, equals the expected present discounted value
of all future dividends, as in Equation (2),

2 P 1
B = B {Z (“a—) D'*f] ' @

Jj=0

Following authors such as Camerer (1989) and West (1988), a ratio-
nal explosive bubble is defined as a price process that satisfies Equa-
tion (1) but not Equation (2). For example, if P is the market price
and Pf is the fundamental from Equation (2), then the market price
will satisfy Equation (1) for any time series B such that P} = PF + B,
and B; = E_1[Biy1/(1 + 1)}; i.e., although investors rationally know
that the current market price, P}/, exceeds the present value of future
dividend payments, P, the value of the bubble term B, is expected
to increase just fast enough so that the higher than fundamental price
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Figure 2

Actual price versus expost warranted price

This figure plots the S&P 300 stock price index (plain line) versus the expost warranted price
dine joining stars) obtained by substitwting into Equation (2) the realized S&P 500 dividends for
Dy and the riskfree interest rate plus a constant equity premium for rp (the actual price as of
December 1933 is used for the truncation approximiation). Al caleulations are performed using
real variables and then plotted in nominal terms 1o retain the visual image of the boom and crash.
See Appendix 1 for duta sources.

an investor pays for the asset today is rewarded by an even higher
than fundamental expected selling price next period. Conversely. an
irrational bubble is defined as a divergence from fundamental prices
that satisfies neither Equation (1) nor Equation (2).

1.2 Expost warranted prices
Much of the traditional quantitative evidence in support of bubbles
compares the actual market price to the expost warranted price, cal-
culated as the discounted present value of future realized dividends.
Following the procedure of Shiller (1981) and others, the “fundamen-
tal” to which the actual price is compared is thus obtained by substi-
tuting realized future dividends and discount rates into Equation (2)
for Dy.j and 14, respectively.

Figure 2 plots the actual value of the S&P 500, monthly from 1920 to
1933, along with the expost warranted price obtained as the present
discounted value of future realized real dividends (data sources in
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Appendix 1).3 Visual inspection of Figure 2 suggests that, if investors
had perfect foreknowledge of future dividend behavior, then the only
way they would have supported the spectacular rise and fall in ob-
served prices as a market equilibrium is if the market price contained
an explosive bubble.

Our finding from visual examination of Figure 2 is supported by
Table 1, which presents some summary statistics on prices and returns
as well as unit root tests for the presence of bubbles.* Column 1 lists
the information reported in each row. Results for the actual S&P 500
are reported in column 2. Column 3 reports results from the expost
warranted series plotted in Figure 2. Other columns report results for
alternative models to be discussed below.

Part A of Table 1 contains some summary statistics on the actual
and various model-generated prices. First, note from the first three
rows of statistics in Table 1 that the expost warranted price is roughly
150 points below the actual price on the peak date (September 1929).
Second, note that if there is an explosive bubble in prices then the
difference between the actual price and the fundamental price G.e.,
the price error) will be nonstationary, since the divergence of actual
prices from fundamental prices will be persistent in nature.> The last
row of part A in Table 1 reports the #-statistic from a Phillips-Perron
test of the null hypothesis that the real price error follows a unit root
process.® For the expost warranted price we fail to reject the unit root
null for the period 1920 to 1933. The same (unreported) result holds
over the 1920 to 1929 subperiod. Thus, under the assumption that the
expost model accurately represents market fundamentals (i.e., that the
model is well specified), we find evidence for a bubble in the market
price.

# All“fundamentals™ calculations are performed using real variables and then translated into nominal
values to retain the visuad image of the boom and crash. Since we do not have daa on realized
dividends into the infinite future, we follow the convention adopted by Shiller (1981 and replace
the present value of dividends outside our data set with the present value of the asset price on
the last date for which we do have data. In Figure 2, the discount rite employed is the real vield
on high-quality shon-term debt plus a constant equity premium equal to the average return on
stocks over short-term low-risk bonds from 1871 10 1988 (see Appendix 1). As has been amply
demonstrated in the literature. discounting dividends at a constant rate, of even at a variable rate
determined by the marginal utility of consumption. leads to the same conclusion.

' There are some additional tests that have been used in the bubbles literature but which we
do not perform in our article. Our choice of bubbles tests has been dictated by our desire o
maintain a level playing field among the many models we investigate, For eaample. we do
not use West's (1987) popular test because both Barsky and DeLong's (1993) augmentation of
the Gordon model and our own nonlinearly augmented ARMA-ARCH forecasting model do not
deliver the overidentifying restrictions necessary to implement the test.

% See Campbell and Shiller (1987) for a discussion of the time-series relationship berween market
prices and dividend-based fundamentals.

© Results reported are from unit root tests with data-dependent lag length and no trend. Adding a
trend does not affect our conclusions.
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Table 1
Summary statistics for fundamental prices and returns, 1920-1933
(8D 2) 1 (5) ) N (8)

Actuz) Basic Augmented Forecast Forecast Forecast
Maodel name S&P 500 Gordon Gordon simulation simulation stmulation

series series maodel maodel constant-r consumption-r bond yield-r
Data plotted in: Figures 1-7 Figure 2 Figure 3 Figure 4 Figure S Figure 6 Figure 7

Panel A: Prices
Peak date 09/29 07/29 03/30 05/30 12/29 05/30 09/29
Peak value 225,19 074440 11082 18492 233.26 24152 215.72
Value at 09/29 225,19 671 1o 17247 209.37 160.80 215,72
P/ correlition —_ —=0.083 —0.00: 0.383° 3 0.318° 0.806"
Unit root {-statistic — -1.31 —1.99 —-1.90 2.35 -3.21*
(reul price error}
Panel B: Returns

Mean 00715 00623 00220 00313 00732 ANI67S 00690
Standard deviation 07237 01334 01715 02690 OR709 OBGOOA 987
Third moment 00055 | ~.(0001 00051 00029 00029
Fourth moment L0045 -0 00023 00021 00036
Unit root ¢-statistic -9.56° =12.11° —-1.77* ~13.89°

(real returns)

This table presents summary statistics for the actual 8&2 500 and the fundamentals from the various maodels tisted i the 1op of cach column, The first
row of Panel A reports the date on which the series listed in each column peuaks. The second row gives the value of the series in question on the
date of its peak. The third row gives the value of the series in question on Seprember 1929, the month in which actual market prices peak. The founh
row of Panel A reports the correlation between the acaal market price-dividend (/1) ratio and the ratio of the fundamental price in question to
dividends (i.e., the fundamental P/D ratio). The last row of Panel A reponts the £-statistic from a Phillips-Perron test—with data-dependent lag length
and no trend—of the null hypothesis that the real price error Goe., the actual real market price minus the real fundamental price) follows a unit root
process. The first four rows of Panel B report the first four moments of the returns distribution from the price series listed at the top of each column,
The last row of the table gives the f-statistic from a Phillips-Perron est—with data-dependent g length and no trend—of the aull hypothesis that
the real retuen implied by the price series in question poss 5 i unit root, Throughout the table, * denotes statistical significance at 10 pereent,

OGGI T 1 G 1/ SAPNIS [idunulf fo navaay aqy
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Part B of Table 1 presents some statistics on the real returns implied
by the various price series, including the first four moments of each
returns distribution and a test for a unit root in the returns process.
As noted by Camerer (1989), if there is a bubble in actual prices
then actual returns will have a higher variance and fatter tails than
fundamental returns since, as bubbles expand and then burst in the
actual series, unusually sizable returns will be realized. Results from
the first four rows of part B of Table 1 therefore support the bubbles
hypothesis in that the expost warranted returns series has a much
smaller standard deviation and fourth moment than the actual series.
The last row of Table 1 presents f-statistics from a Phillips-Perron test
of the null hypothesis that returns from the price series in question
possess a unit root. The result that actual returns reject the null, while
the expost series does not, is consistent with the assertion of Shiller
(1989) and others that returns from the expost series are much too
smooth relative to actual returns.

From Figure 2 and Table 1 it is clear that if expost warranted prices
provided an accurate estimate of the market's fundamentals, then we
would fail to reject the bubbles hypothesis. However, we argue that
expost warranted prices do 1ot provide the most accurate representa-
tion possible of the market's true fundamentals. In particular, a stan-
dard assumption that permits us to substitute realized dividends into
Equation (2) for their expected values is that dividends are stationary.
However, there is substantial evidence that dividends are not station-
ary and thus that at least one of the assumptions required to treat the
expost warranted series as an accurate representation of the market's
fundamental price is violated.” We therefore argue that the estimated
fundamentals do not match actual prices in Figure 2 because the es-
timated fundamentals do not match the market’s true fundamentals
and not because the true fundamentals do not match actual prices.

1.3 The Gordon growth model

The Gordon (1962) model seeks to address the nonstationarity of
dividends by using dividend growth rates, instead of levels. This is
accomplished by first rewriting the righi-hand side of Equation (2) in
terms of the most recently paid dividend D;_; and expected future dis-
counted dividend growth. Define g, = (D;~ D;—1)/D;_ as the growth
rate of real dividends, so D; = (1 4 g)D,-1, to rewrite Equation (2)

as PF = B, [Zi D,_lﬂ{___ol(l + g/ (1 + r,+,-)]l which, defining

7 Augmented Dicky-Fuller and Phillips-Perron tests for a unit root in our real dividend series cannot
reject the unit root null at the 10 percent level of significance. For more on the nonstationarity of
dividends, see Kleidon (1986) and Mankiw, Romer, and Shapiro (1983, 1991),
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v = (14 g)/(1 + r) as the discounted real dividend growth rate,
can be expressed as PF = Di_(E )y + 3idist + Va2 + 4L
Equation (2) can then be rewritten as Equation (3).

Pl =D\ Z( —(J‘l+') . )

=

Gordon (1962) assumes that r (the discount rate) and g (the divi-
dend growth rate) are constants so that Jye, = y=(1+g)/(1+ 1) is
a constant for all i in Equation (3). Equation (3) therefore reduces to
the familiar Equation (4) in which the fundamental price is a constant
multiple of the most recently paid dividend.

1 J
Pt —D,_l< +"’) )
8

Using average monthly values of rand g from 1900 to 1919. as might
an investor living in 1920, produces (1 + g)/(r — g) = 200. Figure
3 therefore plots dividends multiplied by 200 (i.e.. the basic Gordon
model's fundamental price) along with the market price.

White (1990:72) states that, by examining the type of relationship
hetween prices and dividends plotted in Figure 3. we can observe
“the remarkable change that overtook the stock market [during the
late 1920s]. From 1922 to 1927 dividends and prices moved together,
but while dividends continued to grow rather smoothly in 1928 and
1929. stock prices soared far above them.” an implication being that
there was a bubble in late 1920s stock prices. Indeed, the statistics
presented in column + of Table 1 for the buasic Gordon model give
the appearance of a bubble in the market price. For example. as seen
in the last row in part A of Table 1 (column 4). we fail to reject the
null of a unit root in the difference between the market price and
Gordon price. a finding which is consistent with the presence of a
nonstationary bubble in the market price. Of course. the conclusion
that the market price contains a bubble rests on the assumption that
the Gordon model accurately represents the dividend forecasting pro-
cedure used by 1920s investors. However, since dividend growth is
far from constant in reality—and. more importantly. possesses time-
varying conditional moments—we would argue that 2 model that sim-
ply assumes unchanging growth rates is misspecified and thus that the
bubble conclusion is unwarranted.?

¥ There is an interesting special case in which Gordon’s assumptions would be warranted. If utility
is the log of consumption, and if consumption equals dividends, then investors will set Pf =
D, (/11 — B)). where 8 is the standard time discount factor. If the growth rate in dmdend.s is
expected to equal Gordon's constant g and the expected return is a constant equal to Gordon's
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Figure 3

Actual price versus basic Gordon growth fundamental

This figure plots the S&P 500 stock price index (pliin line) versus the level of S&P 500 dividends
multiplied by 200 (line joining stars). The line joining stars is also the fundamental price implied
by the Gordon growth model in Equation (4), since using average monthlyvalues of rand g from
1900 1o 1919, as might an investor living in 1920, produces (1 + g)/(r — g) = 200. See Appendix
1 for data sources.

Recognizing the aforementioned shorcoming in Gordon's original
constant-g model, Barsky and DeLong (1993) assume instead that g in
Equation (4) is nonconstant and evolves with a geometrically declining
distributed lag as in Equation (5). with the weighting parameter A
slightly less than unity,

-1

&=0-=2 Zlig:-n-i + Mg 5)

i=0

Barsky and Delong find that they are able to insert Equation (3) into
Equation (4) to obtain “fundamental” prices that roughly approximate
the broad swings observed in annual stock price data from 1880 to
1992, provided they also assume that A = 0.97 and » = 0.06.°

r. then it is possible 10 show that (1 + g)/(r — g) = (B/[1 — D). We thank the referee for drawing
this to our atention.

* Barsky and DeLong (1993) also investigate A = 0.95, but find that with . = 0.97 they are betier
able to capture broad features of the datt. We therefore use . = 0.97 in our examples below.
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Actual price versus augr d Gordon fund. 1tal

This figure plots the S&P 300 stock price index (plain line) versus the augmented Gordon growth
maodel fundamental price (line joining stars) obtained by substituting Equation (3) into Equation
(1) for g,. See Appendix 1 for data sources.

Figure 4 plots actual prices along with the augmented Gordon fun-
damental prices produced by inserting Equation (5) into Equation
(4) using the monthly equivalents of Barsky and DeLong’s A and »
assumptions.'® From visual inspection of Figure 4, an opponent of
bubbles would observe that the estimated fundamentals reproduce
fairly well the broad movement in 1920s stock prices. Unfortunately,
the market price is still sufficiently different from the estimated “fun-
damental” that a proponent of the bubbles hypothesis could claim
a bubble in the market price. For example, notice from column 5
in part A of Table 1 that we fail to reject the null of a unit root in
the augmented Gordon fundamental price error, thereby suggesting
a persistent deviation of actual prices from fundamentals. Thus, as-
suming that the model in Equations (4) and (5) accurately reproduces
the market's true fundamentals, we again find some support for the

™ In Figure 4, A = 0.9975, which is the monthly equivalent of Barsky and Delong's (1993) annual
A =0.97.and r = 0.0049. the monthly equivalent of Barsky and DeLong's 6 percent annually. As
in Barsky and DeLong, we set g, equal to the average value of g over the entire period for which
we have data, which in our case is 1899 to 1934.
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bubbles hypothesis. However, we also reiterate our previous objec-
tion to the conclusion of a bubble in market prices on the grounds
that, like previous models, the augmented Gordon model in Equa-
tions (4) and (5) is not sufficiently well specified to accurately capture
all of the many subtleties in dividend behavior required to examine
complicated phenomena such as price bubbles.

Misspecification in Barsky and Delong’s (1993) augmentation of
the Gordon mode! comes from at least two sources. First, the Barsky
and DeLong procedure uses assumed instead of estimated values for
A and r. Our attempts to estimate A directly from the data reveal
that while theory requires A to be a number only slightly less than
unity, maximum likelihood estimation of A on dividend data from our
entire time period of 1900 to 1933, as well as from the presample
subperiod of 1900 to 1919, fails to yield a A estimate even close to
0.97 annually (i.e., 0.9975 monthly). This suggests that, at least for the
time perioC we study, the data do not support the imposed specifi-
cation for g in Equation (5).!! More important than this, however, is
the misspecification error one produces by inserting Equation (5) into
Equation (4) to obtain the augmented Gordon model. If g is noncon-
stant and evolves according to Equation (3), then Equation (4) cannot
be true since, to derive Equation (4) from Equation (3), g is assumed
constant. The augmented Gordon model comprised of Equations (4)
and (5) is therefore internally inconsistent. This leads us to conclude
that the augmented Gordon fundamentals do not match actual prices
in Figure 4 because the model used to estimate fundamental prices
is misspecified and not necessarily because there is a bubble in the
market price.

2. A New Fundamentals Approximation Procedure

Although all three of the preceding traditional fundamentals estimat-
ing models are misspecified and give the appearance of bubbles, a
definite progression in their relative ability to reproduce market data
is evident. For example, the Gordon fundamental accounts for more
of the rise and fall in market prices than does the expost fundamen-
tal because the Gordon model accounts for the nonstationarity of

Recall that the assumed values used in Figure 4 are A = 0.97 (annually). r = 0.06 (annually). and
& = & (which we calculate over 1899 to 1934). Using values of 2 even a little bit different from the
assumed value (e.g., using estimated values for 1) would result in a substantially less impressive
fundamental series. Furthermore, using the constant discount rate of 8.3 percent obtained from
our data (see Appendix 1), instead of Barsky and Delong's r = 0.06, would produce a much
flatter augmented Gordon fundamental that looks more like the basic Gordon fundamental in
Figure 3. The augmented Gordon fundamental in Figure 4 is also rather sensitive to the assumed
value of g. In paricular, we would obtain a significantly less impressive augmented Gordon
fundamental if we restricted ourselves to in-sample information only when calculating g,.
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dividends. while the expost model does not. Similarly, Barsky and
DeLlong's (1993) augmentation of the Gordon model performs even
better than Gordon’s original version because Barsky and DeLlong al-
low the dividend muliplier. (1 4+ g)/(r — g). 1o rise and fall with the
dividend growth rate while in Gordon's original version the multiplier
is constant. Thus, since both the level and growth rate of dividends
rose during the late 1920s. the augmented Gordon model produces
fundamentals that rise and fall more than the basic Gordon funda-
mental.

Our new approach rests on three observations taken from the three
preceding models. First. we need to model growth rates. not levels.
Second. these growth rates should be allowed to change over time.
as they do in the actual data. Third, because growth is not constant,
one cannot work with Gordon's Equation (4) but must instead use
the less restrictive Equation (3) directly.!? Given these observations,
our objective is to find a well-specified model with which to estimate
the market's expected value of the infinite sum of the progressive
product of discounted dividend growth rates Gi.e.. E— {13y + 31+ +
Va1 V2 - -} so that this multiplier can be used directly with D,
in Equation (3) to obtain the fundamental price PF.

2.1 The forecasting information set
To obtain our estimate of market’s fundamental price. we will use only
information available to time ¢ investors—that is. information dated
t — 1 and earlier—to (a) forecast the discounted dividend growth rate
1y = (14 g)/(1 + 1) into the infinite future and to then (b) calculate
the progressive product of the forecasted ys to obtain the date ¢ mul-
tiplier and resulting fundamental price. Note that since our ultimate
objective is to test for price bubbles, we cannot use past market prices
to forecast future values for y. This is because. if there is a bubble
in the market price. then by including past prices in our forecasting
information set we might inadvertently impute a bubble into our fun-
damental price so that. on comparing our fundamental to the market
price. we might erroneously fail to uncover the market price bubble.
For this reason. we only use information on past discounted dividend
growth rates. 1,_;. to forecast future discounted dividend growth rates.
RYESE

In forming our discounted dividend growth series {_v} we can ob-
tain )7's numerator. (1 + g;). directly from the data. However, we
must make some assumptions regarding the investor's discount rate,
(14 17). which forms the denominator of j;. Cochrane (1992:252-253)

See footnote 8 for an interesting special case in which Equation (4) can still be used.
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suggests three interesting cases for (1+ 1;): a constant discount rate, a
consumption-based discount rate, and a discount rate equal to some
variable reference return plus a risk premium. For completeness we
calculate (1 4+ ;) in all three ways, each of which is explained more
fully in Appendix 1.

For our constant discount rate we follow Shiller's (1989) approach
and set r; equal to the average real return on stocks for 1871 to 1988
(i.e., 8.13 percent annually, or 0.0067 monthly). For our consumption-
based rate we follow authors such as Grossman and Shiller (1981) and
employ the standard power utility function in consumption to obtain
(14 1) = B~YG/Ci—1)® where « is the coefficient of relative risk
aversion, B is the subjective time discount rate. and C; is consump-
tion for the upcoming period ¢. Since most studies suggest that o
somewhere between 1 and 2 is appropriate we use & = 1.5, although
our results are not overly sensitive to other reasonable values for «.
We then set B = 0.9953 so that the average value of the consumption-
based ys equals the average value of the constant-r ys. This gives an
annualized B = 0.943, which is well within the range of 8 &€ [.90. .99]
employed in most studies.!?

For our reference-return plus risk-premium discount rate we set

¢ equal to the real yield on high-quality short-term bonds in pe-
riod ¢ plus a constant equity premium equal to the average real re-
turn on stocks over high quality short-term bonds from 1871 1o 1988.
This particular approach has the attractive feature that 3, = Hied

+r) —
1+UG=al/ll+xD . A+G) . . : . _
A=) = o where 7 is inflation and G, and R, are nom

inal dividend growth and discount rates. respectively. Thus. with r
based on a time-varying bond rate. modeling y allows us to work
with ratios of nominal discount and growth rates directly and thus
removes a possible source of measurement error in the price index
used to form . A variety of statistical tests confirm that. for each of
our three discounting conventions, the {)y} process is stationary over
the presample interval of 1900 to 1919 as well as over the entire 1900
1o 1933 period. "

2.2 The model
Given that y is stationary, the first stage of our fundamentals estima-
tion procedure progresses in three standard steps: model specifica-

* See Mehra and Prescott (1985) for some discussion of traditionally appropriate o and 8 values.

Phillips-Perron tests for a unit root in y. with data-dependent lag length, vield r-statistics of -2.58.
-2.58, and -2.71 for constant-r, consumption-r and bond vield-r, respectively. over 1900 10 1919.
For our entire sample of 1900 to 1933 we obtain {-statistics of -3.03. -3.06. and -2.94 for constant-r,
consumption-7. and bond vield-r, respectively. In all cases the 10 percent critical value is -2.57.
Augmented Dicky-Fuller tests vield even stronger rejections.
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tion, parameter estimation, and forecasting. To specify the appropri-
ate time-series model for y, we begin by analyzing the y data from
before 1920, since this is presumably what an investor living in 1920
would have done in an effort 1o forecast y, and thus estimate funda-
mental prices into the late 1920s. We do not use data from after 1920
for the purpose of model selection since we do not want to use any
information that was not available to market participants in the early
1920s, who were themselves trying to determine the correct model
with which to form their own dividend forecasts.

Traditional Box-Jenkins analysis of y from 1900 to 1919 reveals that
we need not search beyond ARMA models of order (2,2) to remove
evidence of significant autocorrelation in y. However, LM tests reveal
that there remains some significant autoregressive conditional het-
eroskedasticity in the model residuals. Furthermore, investigations for
neglected nonlinearity of the type studied by Lee, White, and Granger
(1993) also suggest the possibility of important nonlinear effects in
the y processes. We found that, when these nonlinear effects are ac-
counted for, nonlinearly augmented AR models with AR residuals fit
the 1900 to 1919 data better than do simple ARMA models. To account
for all the aforementioned features of the y process, and thus produce
a correctly specified model. we therefore consider models for y that
satisfy Equations (6) through (13) listed in Table 2.

The first summation in Table 2's Equation (6) contains the standard
AR component of the y process. The second summation in Equation
(0) is designed to capture nonlinear effects. As can be seen from Equa-
tion (7), the W(-) terms take a logistic transform of the standardized
differences (i.e., z) and squared differences (i.e., 2} of J1—j from its
lagged value as specified in Equation (8). These logistic terms in the
second summation in Equation (6) therefore mitigate, in a nonlinear
manner, the persistence effects of outlier ys from the first summation
in Equation (6). The ability of logistic terms like Equation (7)'s W(-)
to capture nonlinearities in a variety of applications has been well
documented in the artificial neural network literature where their use
has greatly proliferated in recent years.!> Finally, the residual from
Equation (6) is modeled with the AR process in Equation (10) and the
generalized ARCH conditional variance in Equations (11) and (12). A
detailed discussion of the contribution and importance of each feature

* See, for example, Kuan and White (1994). To achieve identification of the 8, parameters in Equa-
tion (7). we follow convention in the artificial neural network literature and assign values o
with Equation (9) so that w, fills the interval [-1,1] as & increases. Similarly, we multiply the paren-
thesized term in Equation (7) by 0.01 to satisfy the bound on the growth of the influence of the
W (-) term, as explained by Stinchcombe and White (1994). Work by Hornik, Stinchcombe, and
White (1989, 1990) reveals that such a specification for ¥(-) will allow the amay of logistic terms
to provide a universal approximator for a wide class of nonlinear functions.
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Table 2
The ARAR-ARCH-ANN forecasting model

A. Definitions
D, = dividends paid during period ¢
& = (D, — Di_y)/ D,y = the dividend growth rate

(14 ) = the gross discount rate (constant, consumption-based, or bond vield-hased)
3 =1+ &)/ (14 rn) = the discounted dividend growth rate

B. The forecasting model

" "
n=a+ E By + E Y, 5 w)+ e ()
=1 =1

1
YO, nw)=0lx { 1+exp| s | am+ le,,,:,_, + w3} (@
=1
Ziay = Oimy = Yimp-1)/0 sy ®
wey = sinlw x Ils + &2 + i+ jb (O]
L
€= Zp‘e,ﬂ + 1y {10)
=1
u=vhy : n~@©1D an
™ my
b=+ Zd’,b,_, +Zs,uf_, RE
1=1 =1
m.m, s dogomy. sy € {001, 2) (13

This 1able presents the model used in our forecast simulation exercises outlined in the text
and in Appendix 2. Values of . 1, s, L . my. and az, for the constant-r, consumption-r and
bond yield-r y series are optimally chosen on 1900 to 1919 data using the augmented Box-
Jenkins procedure outlined in Appendix 2. The optimal specifications are as follows: constant-r:
m=2m=1Ls=11=2¢g=1.m =0 m =1 consumption-r: n; =2.m =1.s=2,1=
2.g=1lm=0.m=1l:bondyvield-r-m=l.m=Ls=1LIl=1lg=2m=0.m=1

in our model for accurately forecasting discounted dividend growth
is presented in Section 3.

Equation (13) provides specification grid boundaries for the mod-
els that we consider. Specific values of ny, 1, s, I, g, my, m> for the
constant-r, consumption-7, and bond yield-r y series are optimally
chosen on 1900 to 1919 data using the augmented Box-Jenkins pro-
cedure outlined in Appendix 2. The optimal specifications are as fol-
lows: constant-r: my =2, m=1,s=1,1=2,g=1,m=0,m=1
consumption-r: m =2, m=1,s=2,1=2,g=1,m=0,m =1,
bondyield-r m; =1, mm=1,s=1,1=1,g=2,m =0,m =1 A
variety of tests reveal that these models are all well specified, as one
would expect from our model construction procedure (see Appendix
2 for details). The robustness of our results to a variety of specification
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errors caused by omission of various terms in Equations (6) through
(13) is discussed below.

Holding fixed the model specifications chosen with 1900 to 1919
data. we next proceed to parameter estimation. We use a rolling es-
timation procedure to produce. for each date from 1920 to 1933. pa-
rameter estimates conditional only on information available to the
investor at the time prices were being determined. For example. pa-
rameter values used to forecast future discounted dividend growth as
of 1920:1. and thus calculate the fundamental price for 1920:1. are
estimated using only datad on ) up to 1919:12. Parameier values used
to caleulate the fundamental price for 1920:2 are then estimated using
only data up to 1920:1. and so forth. We never use data from after
¢t — 1 1o obtain parameter estimates at time ¢ since this would give our
model an unfair advantage over investors who were actually deter-
mining market prices during the 1920s. We do update our parameter
estimates at each date as new information becomes available, how-
ever. since this new information would undoubtedly have been used
by investors in an effort to increase the accuracy of their estimates of
the economy’s “true” underlving parameters.

Finally. we use the model specification and parameter estimates,
which were formed using only information available to the market
at time ¢ (i.e.. information dated t — 1 and earlier) to forecast the
SEQUENCe 3y Jr-1. 11+, €te. Our goal in doing this is to caleulate. for
cach date . the expected value of the sum of the progressive product
of the forecasted ys that appears on the right-hand side of Equation
(3). and then to multiply known dividends from date — 1 by this sum
to obtain the estimated fundamental PF.

As can be seen from the model in Equations (6) through (13), 34, is
not generally independent of yr., so that E_ {1} # E-i{n B
{31=1} in general. Thus. when calculating expectations of the brack-
cted term on the right side of Equation (3). we cannot simply set
t;-; = 0 in Equation (10) and extend out the y series in the traditional
forecasting fashion to form a separate expectation for each individ-
ual yy.,. Instead. the expected value of the sum of the progressive
product in Equation (3) must be calculated numerically using Monte
Carfo simulation. This involves producing cross sections of time se-
ries (up to 10.000 observations long) for « in Equation (10). which
are randomly drawn from the distribution in Equations (11) and (12).
to produce cross sections of simulated time series for € in Equation
(10) and thus y in Equation (6). Each simulated time series for y is
then progressively multiplied and summed as in Equation (3). This
procedure is repeated 10.000 times to produce 10,000 different values
for the bracketed term on the right-hand side of Equation (3). The
expected value of the bracketed term is then calculated as the mean

350

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ditidend Forecasting Procedure

Value
250

228!

200
175
150
125-
100 .
|

75 :

50

I
]HW/‘ .
)

25-. !
1820 1922 1924 1928 1928 1930 1832 1934
Period
— Actual Price ==~ Fundamental

Figure 5

Actual price versus forecast fon price (cc -r)

This figure plots the S&P 500 stock price index (plain line) versus the fundamental price (line
joining stars) obtained with our ARAR-ARCH-ANN model in Table 2 and forecast simulation
procedure from Appendix 2. The discount rate 7 is a constant equal 1o the average return on
stocks from 1871 10 1988, See Appendix 1 for data sources.

’ 1

of the 10.000 simulated summed products. This expected value is fi-
nally multiplied by the most recently observed dividend to calculate
the fundamental price PF. A detailed description of our simulation
procedure is contained in Appendix 2.

2.3 Results

The solid line in Figure 5 plots the actual S&P 500. The line connect-
ing stars in Figure 5 plots our forecast simulation fundamental price
sequence produced with constant discount rates. Note that our fore-
cast simulation fundamental price rises and falls like actual prices and
peaks within 10 points of the actual price’s peak. Although our funda-
mental peaks 3 months later than actual prices (i.e.. in December 1929,
instead of September 1929), our fundamental clearly rejects the notion
of an explosive bubble that expands until September 1929 and then
bursts. An explosive bubble requires that the difference berween the
market and fundamental price increase as long as the bubble floats.
Conversely, Figure 5 reveals that the difference between our funda-
mental and the market price is actually shrinking throughout 1928 and
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Figure 6

Actual price versus forecast m price (cc ption-r)

This figure plots the S&P 500 stock price index (plain line) versus the fundamental price (ine
joining stars) obtained with our ARAR-ARCH-ANN model in Table 2 and forecast simulation
procedure from Appendix 2. The gross discount rate (1 + r;) is derived from a standard power
utility function in consumption with the coefficient of relative risk aversion @ = 1.5 and the
monthly subjective time discount rate 8 = 0.9933 (i.c.. 0.945 unnually). See Appendix 1 for data
SOUrCes.

- Tati

1929. Indeed, the Phillips-Perron unit root ¢-statistic in the last row of
part A in Table 1 (colurnn 6) reports that, unlike the traditional mod-
els, we are able to reject the null hypothesis that our real price error
displays a unit root (the saume result is obtained if we restrict our time
period to 1920 to 1929). This suggests that there is not a bubble in
actual prices when compared to our fundamentals. Furthermore, as
theory suggests should be the case in the absence of bubbles [e.g.,
Camerer (1989), Shiller (1989)], part B of Table 1 reveals that returns
from our fundamental series are slightly more volatile than actual re-
turns, as measured by their standard deviation, and have fourth mo-
ments (i.e., tail thickness) roughly equal to actual returns. In addition,
our fundamental implies returns that, like actual returns, are station-
ary. Thus, unlike the traditional models we investigate, our dividend
forecasting model produces returns with properties similar to actual
returns.

Figure 6 plots actual prices along with our consumption-based fore-
cast simulation fundamental price. Although the consumption-based

352

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dividend Forecasting Procedire

fundamental does rise and fall like actual prices, this fundamental does
not appear to mimic actual prices quite as well as the constant interest
rate fundamental. In particular, we see from the last row of part A in
Table 1 (column 7) that, unlike the constant-r case, the consumption-
r fundamental fails to reject a unit root in the real price error at the
10 percent level. However, our failure in this one test is weak (esti-
mated t-ratio = -2.33, 10 percent critical value = -2.57) and we see
no strong evidence of bubbles in any of our other statistical exami-
nations of the consumption-r fundamental. For example, from part B
of Table 1 (column 7) we see that the moments of the fundamental
returns distribution accord well with the moments of actual returns.
The observation that our consumption-r fundamental has variance
and tail thickness roughly equal to actual returns is especially inter-
esting given the well-documented difficulty of traditional procedures
to reconcile the volatility of asset prices with the smoothness of con-
sumption. For example, while the results from our new forecasting
model are obtained with a risk aversion parameter of @ = 1.5, an «
value well within the range of 1 to 2 suggested by most theoretical
studies, Grossman and Shiller's (1981) traditional approach achieves
only marginal success with & = 4, and Mehra and Prescott (1983) find
that even with o = 10 it is difficult to reconcile returns volatility with
consumption smoothness.

Figure 7 plots actual prices along with our forecast simulation fun-
damental price with a discount rate equal to the real high-quality
short-term bond rate plus a constant risk premium. The similarity
between the actual price series and this fundamental series is truly
remarkable. The dividend forecasts from our model, which are based
only on dividend and interest rate information available to investors at
the time actual prices were being determined, produce a fundamental
price series that rises from roughly the same value as actual prices in
1920 to peak at exactly the same time, and within 10 points of, the
actual price in 1929. Our fundamental price then crashes along with
the observed price in the early 1930s and recovers with actual prices
in the mid 1930s. There are several reasons for this interesting result,
all of which we discuss in the following section. I"owever, before do-
ing so, it is useful to confirm that Table 1’s statistical results support
our visual findings. From column 8 of Table 1 we see that Figure 7’s
real price error is indeed stationary and that the first four moments
of the fundamental returns distribution match those from the actual
market returns. In particular, fundamental returns are slightly more
volatile than actual returns and almost as fat-tailed. In short, there is
no evidence of a bubble.

An investor living in the 1920s would undoubtedly have used a
wide variety of information (e.g., business forecasts, company reports,
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Figure 7

Actual price versus forecast simulation price (bond yield-r)

This figure plots the S&P 500 stock price index (plain line) versus the fundamental price (line
joining stars) obtained with our ARAR-ARCH-ANN model in Table 2 and forecast simulation
pracedure from Appendix 2. The discount rue # equals the interest rte on low-risk commercial
paper plus it constant equity premium equal to the average exeess return on stocks over low-risk
honds from 1871 1o 1988. See Appendix 1 for data sources.

past prices, etc.) to form expectations of future dividends. We have
only used a small subset of this information: dividends alone in Fig-
ure 5, dividends and consumption in Figure 6, and dividends and
interest rates in Figure 7. We would therefore not expect our funda-
mentals to exactly match the true fundamentals constructed by 1920s°
investors.'® Thus, even if there was no bubble in actual prices, we
would not expect our fundamentals to exactly match actual market
prices. Nevertheless, from visual examination of Figures 5 through 7
and the statistics in Table 1. it is difficult to claim that market prices
differ from our estimates of fundamental prices in a substantial and
persistent bubble-like manner. Since the models used to obtain our
fundamental prices are well specified and derived from the dividend
data, and are therefore consistent with this data, we therefore reject
the hypothesis that there was a bubble in the 1920s stock market.

' indeed, one might argue that our estimated fundamental prices should lag behind actual prices to
the extent that our models sequire extra y realizations to compensate for the fact that our forecasts
are based on a rather limited subset of all information available 1o investors.
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3. Discussion

Two observations arise from Table 1 and the preceding figures. First,
our new forecasting procedure yields fundamentals that reject bub-
bles, while traditional models do not. Second, on comparing Figures
5, 6, and 7 we see that, among our three forecasting models, the
bond yield discount rate specification for y performs best and the
consumption-based y worst. In this section we attempt to explain
these findings.

3.1 Modeling freedom and dividend forecasts

One could argue that our model is more successful than traditional
models in mimicking market prices because our new dividend fore-
casting procedure more accurately reproduces the market's true ex-
pectations of future dividends. Unfortunately, such an assertion can
never be tested directly since we cannot observe the market's true div-
idend expectations. It is nevertheless useful to begin our discussion
by examining the ability of each model to forecast dividends from
some date ¢ into the infinite future, given only information from date
t — 1 and earlier. We then compare the forecasts from each model
with realized dividends. While in principle any date could be chosen
as the forecast starting point, we begin with an example in which date
t is June 1932, the month in which market prices reached their lowest
point following the crash. This choice is especially useful for illus-
trative purposes because it allows us to examine the various models’
abilities to predict the trough and turning point in actual dividends,
which occurred in mid-1933 (see Figure 3).

Figure 8 plots 19 months of realized dividends from May 1932 (pe-
riod 0) to December 1934, the last month in our data sample, along
with the first 60 months of out-of-sample dividend forecasts made by
various models; that is, forecasts for periods 1 through 60 conditional
only on information from period 0. Dividend forecasts for each model
are therefore obtained as Dy, = D,_[Hj=0(1+g,+ j)» where 1—1 = May
1932 and g4; is the period ¢ + j rate of dividend growth forecasted
by the model in question.

The plain curve in Figure 8—which ends in period 18: December
1934 —plots actual dividends. This curve reveals that actual dividends
declined from June 1932 (period 1) until June 1933 (period 13), after
which they began to rebound. This realized pattern looks very dif-
ferent from the monotonically increasing top two curves in Figure §,
which plot dividend forecasts obtained from the augmented Gordon
and basic Gordon models (top and second-from-top curves, respec-
tively). Indeed, compared to actual dividends, the Gordon models are
unrealistically bullish, forecasting increasing dividends from June 1932
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Figure 8

Dividends forecasted as of date 1 = 1932: 6

This figure plots the sequence of future dividends forecasted by various models as of 1932:6
(period 1) using only information from 1932:5 (period 0) and earlier. The truncated plain line
plots actual dividends. The line joining circles plots dividends forecasted by the basic Gordon
growth model of Equation (4). The line joining diamonds plots dividends forecasted by the
augmented Gordon growth model, obtained by inserting Equation (5) into Equation (4). The line
joining stars plots dividends forecasted by our ARAR-ARCH-ANN forecast simulation procedure,
outlined in Appendix 2, using the model in Table 2 with a constant discount rute r equal to the
average return on stocks from 1871 10 1988, See Appendix 1 for data sources.

onward. Quite a different result is seen in the second-from-bottom
curve (joining stars) in Figure 8, which plots the sequence of div-
idends forecasted by our new procedure with a constant discount
rate as in Figure 6.7 This forecast simulation dividend curve reveals
that, using only dividend information available in May 1932, our new
model predicts that dividends will fall for the next 14 months and
then slowly rise thereafter, a pattern very similar to that subsequently
taken by realized dividends.

The ability of our model to produce out-of-sample dividend fore-
casts that fall and then rise like realized dividends highlights an im-

" See Section 2 and Appendix 2 for details on exactly how our forecasts are produced. Note that
what is actually plotted in Figure 8 is the mean of the dividend forecasts for each date from 10.000
replications of our dividend forecasting model. Also note that we use the constant-r version of our
modet here because our procedure forecasts ¥ia, = (1 + g, /(1 + 11,,)), and thus we cannot in
genenal separate forecasts of dividend growth from forecasts of the discount rate. However, with
{1+ 1,2} constant as in Figure 6. we can easily retrieve the forecasted numentor, ﬂl's,(l +8i4y).
and thus a dividend forecast for each period from date 7 into the infinite future.
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Figure 9

Monthly price-dividend ratios

This figure plots montbly price-dividend (P/D) ratios from varicus models. The plain line (highest
line at the 1929 peak) plots the acual P D ratio. The line joining stars (second 1o highest line
at the 1929 peak) plots the fundamentat P/D ratio where prices are obtained with our ARAR-
ARCH-ANN forecast simulation procedure, outlined in Appendix 2. using the model in Table 2
with the discount rate 7, equal to the interest rate on low-risk commercial paper plus a constant
equity premium equal 10 the average excess setum on stocks over Jow-risk bonds from 1871 w0
1988. The line joining diamonds (third to highest line at the 1929 peak) plots the augmented
Gordon fundamental P/D ratio obtained by substituting Equation (3) into Equation ). The line
joining circles (horizontal line) plots the basic Gordon fundamental monthly P'D ratio which,
from Equation (4), is a constant at (1 4+ g)}/(r — g) = 200. The line joining squares (bottom line)
plots the ratio of expost warranted prices to dividends.

portant difference between our procedure and the familiar Gordon
model. When using Gordon's model from Equation (4) to forecast fu-
ture cash flows, one must assume that dividends will grow at the same
constant rate into the infinite future. This is true even if one allows the
assumed constant rate to change each time the forecasting procedure
is employed—that is, for each new starting date T—as in Barsky and
Delong (1993). Conversely, since our approach works directly with
Equation (3), we do not need to make Gordon's constant growth as-
sumption. Our new procedure therefore forecasts future growth rates
in a manner that allows for the possibility of a different forecasted
growth rate in each future period. Figure 8 reveals that this extra de-
gree of freedom in modeling )'s behavior helps us produce superior
forecasting results.

The extra modeling freedom offered by our procedure is especially
important when calculating the expected discounted present value of
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the sequence of forecasted dividends; that is, £, {Zziu (ﬂ,":(,y,_,_i)}
on the right side of Equation (3). Indeed, by rewriting Equation (3)
to note that £_, {-} = PF/D,_y, it is easily seen that the mechanical
explanation for why our new model outperforms traditional models
is that our dividend muliiplier, £_;{-}, looks more like the market's
realized price-dividend ratio than do the multipliers implied by tradi-
tional fundamentals models. To see this, Figure 9 plots the monthly
price-dividend (P/D) ratios (or multipliers) for the fundamentals from
Figures 2, 3, 4, and 7 (note that these monthly P/D ratios will be an
order of magnitude greater than traditionally reported annual P/D
ratios). Correlations between Figure 9's actual P/D ratio and the other
fundamental P/D ratios. or dividend multipliers, are reported in Ta-
ble 1.

The actual P/D ratio is the plain line in Figure 9 which peaks in
September 1929. The horizontal line connecting circles at 200 in Figure
9 is the constant basic Gordon monthly multiplier, (14+g)/(r—g) = 200
from Equation (4). as explained in Section 1.3. The bottom curve con-
necting squares. with a trough instead of peak in 1930, is the ratio of
Figure 2's expost warranted prices to dividends. The negative corre-
lation between the expost and realized P/D ratios is to be expected
since. on comparing Figures 2 and 3, we see that the expost warranted
price is even flatter than dividends. The smoothly rising and falling
curve connecting diamonds that peaks a full year after, and consider-
ably lower than, the actual price-dividend peak is the augmented Gor-
don multiplier. The augmented Gordon multiplier's late peak, which
is a product of Equation (5)'s slow-to-react long-lag weighting mecha-
nism, explains why Figure 4's augmented Gordon fundamental peaks
later and lower than the market price. Finally, the jagged line con-
necting stars, which most closely resembles the actual P/D curve, is
the £_;{-} muliplier—that is, the fundamental P/D ratio—from our
model."™ From Figure 9 and the statistics in Table 1 it is easily seen
that our model produces fundamental prices that behave most like
murket prices because our model produces a time series of dividend
multipliers, £_{-}. that most closely mimics the market P/D ratio.

3.2 Model specification

So far we have seen that the freedom to model directly the time-
series properties of discounted dividend growth, y, is a key factor for
forecasting future dividends, and thus for calculating the expected dis-
counted present value of the sequence of forecasted future dividends,

e

As one can surmise from visual inspection of Figures 5 and 6, multipliers from our constant-r and
consumption-r models look substantially simifar to those from the bond yield-r shown in Figure
9. except that the constant-r and consumption-r multipliers peak a lide later.
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E_1 {3 (l'lf’___o_)r,+i)}. However, the increased freedom afforded by
our direct use of Equation (3), instead of the restrictive Equation (4),
can only be taken advantage of if we employ a well-specified model
to forecast the y sequence. This fact can be clearly demonstrated by
observing the effects of omitting various features of Equations (6)
through (13) and instead using a misspecified model to estimate fun-
damental prices. For the sake of brevity, we will concentrate on the
bond yield-r version of our model, whose multiplier E,_,{-} is plotied
in Figure 9. Results from the constant-» and consumption-r versions
are substantially similar.

3.2.1 Thebasic ARARshell. The most basic strategy one could em-
ploy when modeling the y; series is to simply regress y on a constant,
so that the forecasted future jy..s are just an equally weighted mov-
ing average of the past ys. Not surprisingly, the fundamental prices
we obtain from such a model do not track market prices at all well.
Indeed, the long-run average value of )y changes so slowly that the
fundamental prices from this overly simple mode! (not plotted in this
article) look very similar to the basic Gordon fundamental in Figure 2.

A somewhat more sophisticated modeling approach is to employ
a standard time-series representation for 3, in an effort to capture
more of y's time-series properties. We therefore plot in Figure 10 the
fundamental price series obtained with dividend forecasts from the
basic ARAR shell of a model that remains after we omit from Equations
(6) through (13) the nonlinear ANN (artificial neural network) terms
in Equations (7) through (9) and the ARCH term in Equation (12)."°
In other words, we plot in Figure 10 the bond yield-r fundamentals
from the forecast simulation model given by )y = o + B )-1 + €3
€= Y7, pi€r—i+ tir; ty ~ (0.0).

As one would expect, the ARAR fundamental price series in Figure
10 rises and falls somewhat more than the fundamental price series
from Figure 2’s constant )y Gordon model. However, even a carefully
chosen ARAR model is still sufficiently misspecified that the funda-
mental price series it produces peaks 75 points lower than actual
market prices in September 1929. Indeed, if we eliminate from our
full model in Equations (6) through (13) both the ARCH residual and

¥ Recall from our discussion in Section 2.2 that we employ an AR in mean with AR residuals as our
base model for 3y (see Equations (6) through (13) in Table 2), instead of ARMA, because with
the logistic ANN terms and ARCH included the ARAR base representation fits the data better than
ARMA. To facilitate easy comparison with our article’s other figures and results, which are based
on the ARAR foundation, we therefore plot in Figure 10 the fundamental prices produced by the
ARAR shell of our model which excludes both ARCH and ANN terms. Results from a basic ARMA
specification are essentially the same as those reported for the ARAR specification.

W
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Figure 10

Actual price versus forecast simulation price (bond yield-r): ARAR shell

This figure plots the S&P 500 stock price index (plain line) versus the fundamental price ine
joining stars) obtained with our forecust simulation procedure, outlined in Appendix 2, using the
mode! in Table 2 with the ARCH and ANN terms excluded to leave only the basic ARAR shell
remaining. The discount rate 7 is the interest mate on low-risk commercial paper plus a constant
equity premium equal to the averige excess return on stocks over low-risk bonds from 1871 1o
1988. See Appendix | for data sources.

the nonlinear W(-) term, then the rudimentary ARAR shell of a model
that remains produces fundamental prices in Figure 10 that, for sev-
eral of our tests, suggest a bubble in market prices. It is important to
note, however, that any appearance of bubbles from a standard time-
series model can be explained by the fact that even a carefully chosen
AR(P)AR(q) (or ARMA(p,q)) model for y, fails specification tests for
residual ARCH and nonlinear effects and can therefore not be ex-
pected to capture all the features of the data necessary to produce
reliable discounted dividend forecasts.

3.2.2 The importance of ARCH. We now add the nonlinear logis-
tic ANN W(-) terms in Equations (7) through (9) back into our model,
but still omit the ARCH terms in Equation (12); that is, we reestimate
Table 2's model Equations (6) through (13) under the false assumption
that the residual from Equation (10) is homoskedastic. The resulting
no-ARCH fundamental price series is plotted in Figure 11. Note that
Figure 11's no-ARCH fundamental performs better than the simple
ARAR shell in Figure 10, but not nearly so well as Figure 7's fully
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Figure 11

Actual price versus forecast simulation price (bond yield-r): no ARCH

This figure plots the S&P 500 stock price index (plain line) versus the fundamenui price (line
joining stars) obtained with our forecast simulation procedure, outlined in Appendix 2, using
the model in Table 2 with the ARCH terms excluded. The discount rate r; is the interest rate on
low-risk commercial paper plus a constant equity preminm equal to the average excess return on
stocks over low-risk bonds from 1871 to 1988. See Appendix 1 for data sources.

specified model that includes ARCH. In particular, without ARCH in
the model (Figure 11) we are unable to capture the full height of the
1929 price peak.

Mechanically, the model with ARCH included (Figure 7) does a
better job of catching the full height of the 1929 peak than the no-
ARCH restricted version (Figure 11) because the conditional variance
of Equation (10)’s #, residual, which is given by &, from Equation (12),
is falling over time. This fact is revealed in Figure 12, which plots at
each date the cross-sectional average of the forecasted b, variances
produced by our 10,000 model simulations. Note in particular that the
b, variance is much lower in 1929 than it is in 1920 and is lower again
by the mid-1930s.

To see why the ARCH model’s falling innovation variance is im-
portant for forming fundamental prices, note that the variance of our
 series can be decomposed into the sum of the variance of the au-
tocorrelated component of y;, which we model with Equations (6)
through (10), plus the variance of Equation (10)'s #; residuals; that is,
Var(y) = Var(y, — ;) + Var(u,), where Var(1) = b, from Equation
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Figure 12

Forecasted error variance

This figure plots the average value of the b, conditional variance from our 10.000 simulations
at each date. Appendix 2 outlines the simulation procedure used. Table 2 contains the model
employed. The discount rate » is the interest rate on low-risk commercial paper plus a constant
equity premium equal 1o the average excess return on stocks over low-risk bonds from 1871 to
1984, See Appendix 1 for data sources.

(12). Stationarity of the y process ensures that in the limit the mean
of our forecast-simulated y distribution converges to the uncondi-
tional mean of y and is therefore independent of the initial conditions
in our simulation exercise, which are determined by the values of
Vi=1, Vi—2. €1-1. €= from Equations (6) through (13) as explained in
Appendix 2. In particular, the value of £_{y,4,} as n — oo is asymp-
totically independent of the values of (34—1. )4—2) on which our 10,000
simulated economies are based.

Note, however, that the speed with which the mean of our cross
section of simulated yy4;s converges to the unconditional mean of y
depends on the variance of the autocorrelated component of y relative
to the variance of the u residuals. Obviously, if the b, residual vari-
ance completely dominated the autocorrelated component’s variance,
then the y,—; initial conditions would be completely unimportant for
forecasting future ys, as the mean of the 4,5 generated at each date
i by our 10,000 simulated economies would simply equal the uncon-
ditional mean of y. Conversely, with some importance being attached
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to the autocorrelated component of y, the cross-sectional mean of
the simulated y;4;s will only gradually converge to the unconditional
mean as { — o0.

The speed with which the cross-sectional mean of the simulated
Yi+is converges to the unconditional mean of y is inversely related to
the magnitude of the residual’s variance, b,. Thus, as b, declines and
the importance of the u residual decreases relative to s autocorre-
lated component, the simulated series’ speed of convergence to the
unconditional mean of y declines. As b, falls during the late 1920s,
past realized values of y in the data—that is, the initial conditions in
our simulations—therefore have an increasingly persistent influence
on the simulated evolution of ;. Thus, with falling A, initial condi-
tions have a greater influence on the sum of the progressive product
E,_{-} on the right side of Equation (3) and therefore on the funda-
mental price produced by our procedure.

Notice from the slope of the dividend series plotted in Figure 3 that
the growth rate in dividends (i.e., slope) increased during the later
half of the 1920s (this fact will be demonstrated more fully below).
Since b, is assumed constant in the model without ARCH, the no-
ARCH model interprets this late 1920s increased dividend growth in
the same manner as it interpreted movements in y from the early
1920s when the innovation variance was high. The constant variance
no-ARCH model therefore produces simulated future values for 34, ;
that revert to the unconditional mean of y rather quickly. Thus, the
no-ARCH model produces values for Equation (3)'s E_;{-} multiplier
during the late 1920s that are somewhat similar to values produced
by the no-ARCH model in other periods.

Conversely, in our full mode! with ARCH included, the late 1920's
drop in b (see Figure 12) increases the influence of the y,_;, y,_>
initial conditions on the evolution of the )y, simulations. Large re-
alizations for y,_1, 31—2 in the late 1920s therefore keep our ARCH
forecasted )y4;s above the unconditional mean longer than would be
the case with no-ARCH constant variance. Combined with the late
1920's increased s, the late 1920’s smaller b, ARCH variance there-
fore yields a larger E—;{-} multiplier than would be the case with
constant variance. This is one reason (others are discussed below)
why our full model with ARCH in Figure 7 produces a higher funda-
mental price than does our no-ARCH model in Figure 11.%

173

In addition, the continuing decline in the variance of 1, innovations throughout the 1930s causes
our full model with ARCH to react more strongly to the posterash decline in dividend growth
than does the constant variance no-ARCH model. This helps to expliin why the fully specified
fundamental in Figure 7 falls fanther between 1929 and 1932 than does the constant variance
fundamental in Figure 11.
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3.2.3 The importance of ANN terms. An important problem with
omitting ANN terms from our model in Equations (6) through (13)
is that, without the nonlinear terms in Equations (7) through (9), the
conditional mean process for y;, is misspecified. Thus, whatever pa-
rameters are included in the model will be inconsistently estimated
and the model residual will contain systematic effects that would oth-
erwise have been captured by the omitted variable. The conditional
variance process for the #, residual from Table 2's model without
ANN terms will therefore embody two effects: a spurious variance
effect produced by the conditional mean misspecification and a true
variance effect. Because of the confounding spurious effect, it may be
difficult for the ARCH terms in a no-ANN model to accurately capture
the true conditional variance process necessary to obtain true fun-
damental prices. Thus, without ANN in the mean, it may be difficult
for ARCH to perform its intended function described in the previous
section. Studying the performance of our model without ANN terms
nevertheless provides some interesting insight.

If we do omit the ANN terms in Equations (7) through (9) from
our model, but include ARCH, then we obtain a no-ANN (but ARCH
included) fundamental price series that looks very similar to the basic
ARAR fundamental in Figure 10. Indeed, this similarity is so strong
that we do not present a separate plot of the no-ANN (but ARCH
included) fundamental price series in our article. This close similarity
between the ARAR and no-ANN (but ARCH included) fundamentals
reveals that, unless ANN terms are included in the model, there is
almost no benefit to adding ARCH. It thus appears that a key role of
the ANN terms is to correctly specify the conditional mean of ), so
that the ARCH variance process can be estimated correctly.

One way to visually observe why the ANN terms are so important
for correctly specifying the conditional mean of 3, is to plot the fore-
casting surface implied by our model with ANN included. We therefore
graph in Figure 13 the three-dimensional surface which is the bond
yield-r model's forecast mapping from y,_;, y,—> into y,, as specified
in Equations (6) through (13) with parameter estimates obtained using
data available to the market in September 1929. For tractability, and to
isolate the ANN effect, we set the € forecast error in Equation (6) to its
unconditional mean of zero so that the forecasting surface plotted in
Figure 13 is given by y; = 0.145+0.85),; +0.01(1+exp(3.41(—0.31 —
0.940y1-1 — y1-21/0.02 — 0.170y,_y — y—21*/0.022)])~".

From Figure 13 and the preceding equation, we see that the fore-
casting surface is comprised of three sections. First, the left side of
Figure 13—in the region where y_; < y; (e.g., ¥—1 = 0.95, Yy =
1.05)—is occupied by a lower triangle-shaped plane with its wide
base along the bottom of the figure’s 34_; axis and its hypotenuse up

364

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ditidend Forecasting Procedure

Yo
110

1.05

1.00

0495

Forecasting Surface: Dlamonds

Data Pointe: Plilars

Figure 13

Forecasting function: September 1929

This figure plots, as the surface of diamonds, the functional relationship between (331 3,2) and
3y implied by our model in Table 2, with the discount rate r, equal to the interest rate on low-risk
commercial paper plus a constant equity premium equal 10 the average excess return on stocks
over low-risk bonds from 1871 to 1988. Model parameter values are from September 1929, the
month of the stock market crash. The 60,000 short vertical pillars rising up from the figure's floor
represent the first 6 months of Monte Carlo evolutions for 3., (measured on the vertical axis) as
a function of yr4,-1. ¥is-2 Gie., the two most recently forecasted values of y in the Monie Carlo
sequence) from our 10,000 simulated economies produced in September 1929. The five wll pillars
that extend from the figure’s floor all the way up through the forecasting surface represent, from
top to hottom, the maximum, 99.5th percentile, median, 0.5th percentile, and minimum values of
4 forecasted in September 1929,

the diagonal of the forecasting surface from the lower front corner to
the top back corner, where -1 & yy_;. Second, on the right side of
the figure—where y,_; > ¥ (e.g., y1—1 = 1.05, y,—2 = 0.95)—is an
upper triangle-shaped plane with its wide base along the top of the fig-
ure and its hypotenuse on the surface’s diagonal, where ),y = y,_;.
Notice that this upper triangular plane is shifted higher up the
axis than is the lower triangle; that is, the value of ) forecasted with
V-1 = 103, »—2 = 0.90 is higher than the value of )y; forecasted
with -1 = 1.05, y—2 = 1.10, even though the slope of both triangu-
lar planes in 3y is zero. Finally, rising up from the lower left-hand
plane, to connect with the higher right-hand plane, is a steeply sloped
logistic curve that runs along the diagonal of the forecasting surface

365

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Review of Financial Studies /v 9 n 2 1996

from the lower front corner to the top back corner in the region where
Vi1 & y—2. This steep connecting section is the area in which the
nonlinear ANN term is “active.” The importance of each of the three
forecasting regions in Figure 13 is discussed below.

We now explain the meaning of the short vertical pillars rising up
from the floor of Figure 13. To do this, recall that, as explained in
Section 2, the functional relationship plotted in Figure 13 is used to
forecast a stream of s from September 1929 out into the (almost) infi-
nite future, using only market data from August 1929 and earlier, and
that the present value of this forecasted y stream is used to estimate
September 1929's fundamental price in Equation (3). As described in
Appendix 2, this is accomplished by first forecasting y; given actual
data on y_p, y—2 and a randomly obtained u innovation. We next
use the same forecasting function to forecast y,4; using as inputs
into our model the just-forecasted yy, the actual value of y;_y, and
another randomly drawn innovation. In similar fashion, forecasted
values of 37 and yy4 are next used to forecast )45, and so forth, until
a forecast for 3r410.000 is obtained. We then repeat this entire fore-
casting procedure 9,999 times—using each time a new sequence of
n disturbances, but the same forecasting function, in standard Monte
Carlo fashion—so that we obtain 10,000 different forecasts for the se-
qUeNCe Vi, Vitt, V42 - - -+ Yie10.000- As explained earlier, the multiplier
Ey { X (% 144)} is then calculated as the average value of the
sum, Y0 (1% y144), from our 10,000 economies.

Notice from Equation (3) that forecasted y, appears in every prod-
uct on the right side of Equation (3), while forecasted y,4, appears
in all but one product, y+; in all but two products, etc. Early values
of forecasted y,4; therefore have a much greater effect on the entire
product sum in Equation (3) than do later values of forerasted 4.
For this reason, the behavior of the first few jy;,; forecasted largely
determines the value of £_,{-} in Equation (3). In Figure 13 we there-
fore plot, as the 60,000 short vertical pillars rising up from the figure’s
floor, the first 6 months of Monte Carlo evolutions for y;.; (measured
on the vertical axis) as a function of y4;—y, Jy4i-2 (i.e., the two most
recently forecasted values of y in the Monte Carlo sequence) from
our 10,000 simulated economies produced in September 1929. The
five tall pillars that extend from the floor of Figure 13 all the way
up through the forecasting surface represent, from top to botiom, the
maximum, 99.5th percentile, median, 0.5th percentile, and minimum
values of y.; forecasted in September 1929. Notice that most of the
pillars occur along the diagonal of the forecasting surface in the area
occupied by the ANN logistic curve. This provides visual confirmation
that the ANN terms are indeed important for forecasting y.
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With all the elements of Figure 13 accounted for, we can finally
explain why the ANN terms are important for forecasting discounted
dividend growth. To do this, recall that the upper triangular plane in
Figure 13 is situated higher up the ), axis than is the lower triangular
plane; that is, for a given value of 3;_,, the forecasted value of y, is
higher for low values of 3y_» than it is for a high values of y,_, all
else constant. Also note that the logistic curve rises from the lower
plane, where ;- < ¥, up to the upper plane, where y,_, > y,._,,
as y,—2 falls below yy_,. Thus, unlike the two triangular regions of the
forecasting surface, which have zero slope in the - direction, the
region along the diagonal of Figure 13 is negatively sloped in y,_».
The diagonal region is also more positively sloped in y,—; than are
the two triangular planes (which have the same slope as each other),
since starting from a point on the lower plane where y,_; < y,_», and
increasing ¥, until y—; > -2, results in an upward move to the
higher plane.

The fact that Figure 13’s forecasting surface is more steeply sloped
in both directions when -1 & yy_; than it is when either y,_; <<
Ji—2 OF Y- >> J—2, as in the triangular regions, is important for
explaining the ANN’s success in forecasting dividends. To see why,
notice that most of the y pillars protruding up from the floor of Figure
13 pierce the forecasting surface along the surface’s diagonal; that is,
in the area occupied by the logistic ANN curve. Thus, in the majority of
Monte Carlo iterations, Jy4.;-1 X 142 S0 that 14, is forecasted from
(F14+i-1, Vi+i-2) With a large positive weight on y;4.,-; (approximately
1.7) and a smaller negative weight on )y, (approximately -0.9).
However, when y4.i- and Y43 are far apart, we move to Figure
13’s flatter triangular planes in which the slope in y;4;—; is only 0.85
and the slope in y4;—2 is zero. The nonlinear ANN term therefore
allows us to treat different pairs of yy4i-1, Vi4i—2 differently.

Unlike our flexible ANN model, a standard linear ARAR or ARMA
model is forced to give the same lag weights to past y values no
matter what their behavior or history. Thus, sudden and potentially
explosive outlier ys are viewed in the same functional manner as
subtle changes in )’s behavior. A standard ARMA model therefore
compromises between its desire to capture small subtle changes and
its aversion to outlier overreaction by selecting a more gently sloped
forecasting surface that, by necessity, mutes its response to subtle y
innovations. Conversely, our ANN model is able to allow for more
dramatic responses to subtle y movements in the yp4;_1 = y4i_2 re-
gion, where almost all observations lie, while simultaneously avoiding
overreaction to outliers by having a different functional relationship
in the outlier region. The ANN’s increased modeling flexibility in the
Prri-1 = Wiyi-2 region leads to more persistence in y;44's simulated
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evolution in the vast majority of cases. For reasons explained in the
previous section on ARCH effects, this increased persistence in simu-
lated y series leads to higher fundamental prices for the ANN-included
Figure 7 than for the no-ANN Figure 10.

3.3 The behavior of y and the timing of the peak

We have thus far seen that, to obtain fundamentals that mimic the
general rise and fall in market prices, the approach employed must
be sufficiently flexible to have the potential to fit the data (Section
3.1) and the model used must be well specified (Section 3.2). In this
section we discuss factors that are especially important for our ability
to capture the timing of the September 1929 peak in market prices.
In particular, we discuss why it is that our bond yield-r fundamental
price trns down in October 1929 at exactly the same time when the
stock market actually crashed. More importantly, we discuss why it
is that our fundamental price peaks in 1929 instead of in other years,
such as 1927, when the dividend growth rate was even higher.

We begin by investigating the October 1929 decline in Figure 7's
fundamental price. To do this, we plot in Figure 14 the forecast map-
ping surface, and the 60,000 pillars that represent the first 6 months of
forecasts from each of our 10,000 simulation replications, that are pro-
duced by the bond yield-r model from October 1929. The construction
of Figure 14 is analogous to that of Figure 13 described above. No-
tice that Figure 14's forecasting surface appears virtually identical to
Figure 13's surface. The similarity of these two surfaces reveals that,
although we update our estimates of model parameters every month
as the investors” information set is updated, the parameter values for
the October 1929 forecasting function are virtually identical to those
from September 1929. This finding suggests that the ability of Figure
7's bond yield-r model to fit the turning point in market prices is not
due to a sudden and substantial shift in parameter values between
September and October, but is instead due to an important change in
the nature of 3s (lagged) behavior between September and October
1929. This observation is confirmed by noticing the substantial down-
ward shift (i.e., a shift toward the origin of the graph) from Figure 13
to Figure 14 in the wll pillars which represent the forecasts of ypy;.
This downward shift in the distribution of the simulated economies’
forecasted discounted dividend growth rates, yr4.;, produces an £ {-}
multiplier that is smaller in October 1929 than in September 1929 (see
Figure 9) and thus yields a fundamental price in October 1929 that is
lower than the September 1929 fundamental (see Figure 7).

We now proceed to the discussion of why our fundamental price
series peaks in 1929, instead of in some other year, by plotting in
Figure 15 the bond yield-1»'s ) series; that is, the time series of realized
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Figure 14

Forecasting function: October 1929

This figure plots, as the surface of diamonds. the functional relationship between (3-y. 37o2) and
¥ implied by our model in Table 2, with the discount rate r; equal to the interest rate on low-risk
commercial paper plus a constant equity premium equal 1o the average excess return on stocks
over low-risk bonds from 1871 to 1988. Parameter values are from October 1929, the first month
after the stock market crash. The 60,000 shont vertical pillars rising up from the figure's floor
represent the first 6 months of Monte Carlo evolutions for 34, (measured on the verical axis) as
a fuaction of 3y4,-1s Pree-2 Gee, the two most recently forecasted values of y in the Monte Carlo
sequence) from our 10,000 simulated economies produced in October 1929. The five tall pillars
that extend from the figure's floor all the way up through the forecasting surface represent. from
top 10 bottom, the maximum, 99.5th percentile, median, 0.5th percentile, and minimum values of
14, forecasted in October 1929,

discounted dividend growth rates (i.e., the data) on which our model
is estimated and forecast simulations are based. Notice that, while
» reaches a local maximum in mid-1929, the 1929 peak in y is not
a global maximum. Indeed, the y, series peak in 1929 is somewhat
lower than the 1927 peak in y, though the 1929 fundamental price in
Figure 7 is considerably higher than the 1927 fundamental.

The 1929 fundamental price peak is higher than the 1927 price
peak for two reasons. First, as seen in Figure 3, the level of dividends
was higher in 1929 than it was in 1927. Thus, even if the E_{-}
dividend multiplier in 1929 was equal to the 1927 multiplier, as in
the basic Gordon model, the fundamental price (i.e., dividends times
the multiplier) would be higher in 1929. Of course, as seen directly
in Figure 9, our model's E_{-} dividend muliiplier is considerably
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Figure 15

Discounted dividend growth rate (bond yield-r)

This figure plots the discounted dividend growth rate, 3 = (1 + g)/(1 + n), where g is the
dividend growth rate and 1 is the interest rate on low-risk commercial paper plus a constant
equity premium equal to the average excess return on stocks over low-risk bonds from 1871 10
1988. See Appendix 1 for data sources.

higher in 1929 than it was in 1927, which is the second reason the
1929 price is higher; the increased £, {-} multiplier magnifies 1929's
increased dividend levels to produce the 1929 price peak.

There are two reasons why we obtain a 1929 dividend multiplier
E;_i{-} that is larger than the muliiplier from 1927, or any previous
year. First is the declining ARCH variance effect, discussed in Section
3.2.2, which causes more weight to be placed on the autocorrelated
component of our model and less weight to be placed on the 1 in-
novations, as we enter the late 1920s. The second, previously undis-
cussed, reason is that the autocorrelated component of our model
becomes more autocorrelated during the late 1920s. This feature is
seen directly in Table 3, which reports parameter estimates and asso-
ciated standard errors for every second December from 1919 to 1934.
Note the downward shift in the regression constant @ and the shift
upward in the AR1 parameter 8, both from Equation (6), which occurs
in mid-1927. This a-B switching implies that the data becomes more
persistent during the late 1920s than it had previously been. Thus, at
the very moment that Section 3.3.2's ARCH effects begin placing more
weight on the persistent component of y, y becomes more persistent.
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Table 3

Par estl for equations (6) through (12): bond yieldr (standard errors in

parentheses)

Equation

number— 6) © N Qo ao; a2y 12)

Parameter

name—» o B ) I P2 P &

Date |

1919:12 0.438* 0.558° -2.619° 1.708* -0.775° 0.372° 0.202
(0.094) 0.095) (0.648) (0.081) (0.07%) 007D (0.141)

1921:12 0.477* 0519° -2.765* 1.742° -0.800° 0.338° 0.194
(0.086) {0.087) (0.658) (0.066) (0.063) (0.070) (0.153)

1923:12 0.503* 0.493° -2.860° 1.760° -0.817* 0.326° 0.198
(0.082) (0.083) (0.653) (0.060) (0.057) (0.069) (0.15%)

1925:12 0.516° 0479 -2.930° 1.765° -0.820" 0.318° 0.234
(0.082) (0.083) (0.675) (0.058) (0.056) (0.07D (0.162)

1927:12 0.158 0.839° -3.403° 1.347° -0.463° 0.290° 0.250
0.237) 0.238) (0.930) (0.290) (0.131) (0.070) 0a7D)

1929:12 0.148 0.849* -3.746" 1.319* -0.4+40° 0.267* 0.257
0.197) 0.198) (0.86-) (0.238) (0.099 0.070) (0.183)

1931:12 0.135 0.861* -3.968° 1.343° -0.4-42° 0.265* 0.224
017D 0.172) (0.931) 0.219 0.107) (0.068) (0.182)

1933:12 0.120 0.876° -4.615° 1.325* -0.416* 0.243" 0.242

©0.173) 0.173) 0.143) (0.212) (0.096) (0.067) (0.19D

This table contains estimated parameter values for the ARAR-ARCH-ANN forecasting model in
Table 2. The discount rate employed in the formation of ) is the interest rte on riskfree debt
plus 4 constant equity premium, as explained in Appendix 1. Although the model is reestimated
every month, only parameter estimates from December in odd numbered years are reponed due
to space constraints. Throughout the table, * denotes statistical significance at 5 percent.

The multiplicative combination of increased dividend growth per-
sistence, and increased weight being placed on this persistence, leads
to superpersistence in the evolution of forecast simulation y,;;s dur-
ing the late 1920s; a superpersistence we call the “Roaring "20s Effect.”
Indeed, the emergence of this superpersistence in )'s evolution sug-
gests that late 1920s investors could have rationally believed that any
changes in dividend behavior would have a more lasting effect on
future dividends than had previously been the case. In other words,
when the news about dividend growth (.e., ;) was good, late 1920s
investors would be much more optimistic than their early 1920s coun-
terparts. Similarly, when dividend news was bad, the behavior of the
dividend data suggests that late 1920s investors would fundamentally
be more pessimistic than their early 1920s counterparts. Changes in
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dividend growth that had produced only small price responses in the
early 1920s would therefore fundamentally lead to much larger price
responses in the late 1920s and early 1930s.

Along with all of the specification and modeling factors discussed
earlier in this section, recognition of the Roaring '20s Effect goes a
long way toward explaining the market price boom and crash. To
again quote White (1990:72), price-dividend plots such as Figure 3
“reveal the remarkable change that overtook the stock market [dur-
ing the late 1920s]. From 1922 to 1927 dividends and prices moved
together, but while dividends continued to grow rather smoothly in
1928 and 1929, stock prices soared far above them.” While, to the
naked eye, this 1927 switch in behavior may appear to imply a sudden
bubble of overoptimism, our more thorough analysis offers a funda-
mental data-driven explanation. In particular, our results suggest that
the relationship between prices and dividends changed during the
late 1920s because the time-series behavior of discounted dividend
growth changed. Indeed, our findings imply that, while an investor
living in 1920 might view a sudden change in discounted dividend
growth as a predominantly temporary shock, an investor living in the
late 1920s would be more easily persuaded to view a sudden increase
in y as the harbinger of persistently increasing prosperity. This finding
is consistent with claims made by economic historians that investors
living in the roaring '20s believed they had entered a new age of peace
and prosperity and therefore viewed economic events with unfettered
optimism. Our results reveal that, while expost dividend realizations
were less than expected, the 1920s optimism may have been ratio-
nal at the time, given the observed behavior of discounted dividend
growth.

3.4 The effect of various discount rate assumptions

In the preceding sections we have focused primarily on results ob-
tained with the discount rate—that is, » in y = (1 4+ g)/(1 + r)—
defined as the real return on high-grade short-term debt plus a con-
stant equity premium, as in Figure 7. We now investigate why our
model, with »; defined as a constant discount rate, as in Figure 5,
peaks a little later than the bond yield-» fundamental in Figure 7, and
why defining (1 + 1) as a consumption-based discount rate, as in
Figure 6, yields a fundamental price that peaks later still.

The time-series behavior of the constant-r and consumption-r y;
series are in general very similar to the behavior of the bond yield-r
i series plotted in Figure 15, as can be inferred from the statistics
in Table 1. Indeed, the main reason we did not plot all three series
in Figure 15 is that the scale of the figure is not fine enough for the
naked eye to adequately distinguish one series from the other. How-
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Value
1.018

1.010
1.008
1.000
0.995 if
0.980
0.985
0.980
0.978
0.970
0.988
0.980
0.958
0.950
0.945
0.940 N : .

1928 1929 1930 1831 1832 1933 1834

Period

~— Bond Yleld-r 565 Constant-r
— Consumption-r

Figure 16

Discounted dividend growth rates: Y(t)

This figure plots the discounted dividend growth rate, 3 = (1 4+ g)/(1 + 1), under various
assumptions for 7. For the line joining squares, the discount rate r; is a constant equal to the
average return on stocks from 1871 to 1988. For the line joining stars, the discount rate r; is the
interest rate on low-risk commercial paper plus a constant equity premium equal 1o the average
excess return on stocks over low-risk bonds from 1871 1o 1988. For the plain line, the gross
discount rate (1 + r) is derived from a standard power utility function in consumption with
the coefficient of relative risk aversion @ = 1.5 and the monthly subjective time discount rate
B =0.9953 (i.c.. 0.945 annually). See Appendix 1 for data sources.

ever, what small differences do exist between the three series are
obviously sufficient to produce perceptible differences in fundamen-
tals, especially around the time of the crash in 1929. To focus on this
important turning point, we plot in Figure 16 all three j; series from
1928 to 1932.

Before embarking on a detailed discussion of Figure 16, note that
any variation in 3y = (1+g)/(1+ r;) for the constant-r series must be
due to variation in (1 + &), since (1 4+ 1) is constant by assumption.
The observation that all three y series in Figure 16 are very simi-
lar reveals that the vast majority of variation in the bond yield-» and
consumption-r y; series is also due to movements in dividend growth,
as opposed to movements in the discount rate, and thus that broad
movements in the fundamental prices these series produce (see Fig-
ures 5 through 7) are mostly due to dividend behavior. Conversely,
one can argue that finer issues, such as timing of the peak, are influ-
enced in important ways by the discounting method employed. This
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Value
1.025

1.020

1928 1929 1830 1931 1832 1933 1934
Period

— Bond Yield-r =268 Constant-r
— Consumption-r

Figure 17

Gross discount rates

This figure plots the discount rate (1 + ;) under various assumptions. For the horizontal line
joining squares, the discount rate 1 is 1 constant equal to the average retuen on stocks from 1871
10 1988, For the line joining stars, the discount rate 7 is the interest rate on low-risk commercial
paper plus 1 constant equity premium gunl to the averige excess return on stocks over low-risk
bonds from 1871 1o 1988. For the plain line, the gross discount rte (1 + 5) is derived from
a standard power utility function in consumption with the coefficient of relative risk aversion
a = L5 and the mumhl) subjective time discount rite # = 0.9953 (e 0.945 annually). See
Appendix 1 for dat sources.

argument is examined in Figure 17, which plots the (1 + 7) denomi-
nator from y; from the three discounting assumptions.

Consider first the constant-r y; series in Figure 16, which is the high-
est line (joining squares) at the 1929 peak. Notice that the constant-r
1y series, and thus the discounted dividend growth rate, reaches its
maximum in July 1929 and then falls somewhat rapidly from late 1929
until the middle of 1932. Of course, as revealed in Figure 3's plot of
the dividend level (multiplied by 200), the level of dividends contin-
ued to rise—although obviously at a declining rate—until early 1930.
However, after September 1929 this sustained increase in dividend
levels was more than offset by the dramatically falling dividend multi-
plier whose value is determined by the declining 3y in Figure 16. The
net result of these two counterbalancing forces—rising dividends and
falling dividend multiplier—is therefore a constant-r fundamental in
Figure 5 that peaks only 3 months late.

Now consider, in comparison, the consumption-r series represented
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by the plain line in Figures 16 and 17. Looking at Figure 17, we see
that the denominator of consumption-r y,, and thus the consump-
tion ratio C;/C;—,, had already started to decline by the beginning
of 1929 and kept falling until the middle of 1932. This decline in
Jr's denominator retarded j,'s descent from 1929 to 1932, as is evi-
denced by the fact that the plain consumption-r line in Figure 16 falls
more slowly than any other }y line over this period. This slower fall
in the consumption-r y; causes our autoregressive forecasting model
to produce a slowly falling forecasted y series, which in turn pro-
duces a consumption-r dividend multiplier that falls more slowly than
the constant-r multiplier. Since dividends were still rising through
early 1930, the consumption-7 );'s slow decline explains why the
consumption-based fundamental in Figure 6 peaks 20 points too high
and 7 months late.

Finally, consider the bond yield-r case represented by the line join-
ing stars in Figures 16 and 17. This fundamental fits market prices more
closely than our other models in part because, as seen in Figure 10,
the bond yield-r y, falls farther and faster than any other y series. The
bond yield y, also rises farther and faster in 1933, which explains why
the bond yield-» fundamental in Figure 7 mimics the market recov-
ery more closely than the other fundamentals in 1933. The reason for
the bond yield-» fundamental price’s superior performance, relative
to the constant-r and consumption-r fundamental series, is evident in
Figure 17. From Figure 17 we see that the bond yield-r's denomina-
tor for )y rises through the crash of 1929 to peak in late 1930, thus
magnifying the concomitant fall in y’s numerator (1 + g), as seen in
Figure 16. Similarly, just as dividend growth starts to rise in late 1932,
the bond yield-r is falling, again magnifying the short-term fluctuation
in dividend growth. While from Figure 16 (and from a comparison of
Figures 5 and 7) it is obvious that differences between the constant-r
and bond yield-r discounting assumptions do not drive our general
ability to reject the bubbles hypothesis, these small differences do
influence second-order effects, such as the exact timing of the peak.

3.5 Summary

In the preceding discussion we have documented four key factors in
the production of our results. First, we have seen in Section 3.1 that
to obtain our results we must use an unrestricted form of the present
value relationship between expected future discounted dividends and
current asset prices, as shown in Equation (3). Indeed, we have seen
that Gordon’s familiar constant dividend growth restriction is suffi-
ciently at odds with the data that models built on this assumption can-
not reproduce the full boom and bust in 1920s stock prices. Second,
we have seen in Section 3.2 that, to accurately capture key features of
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the data necessary to reject bubbles, one must employ a time-series
model for discounted dividend growth, j;, that does not fail standard
specification tests, including tests for uncaptured variance effects and
nonlinearity. In particular, we have shown that failure to account for
ARCH and ANN effects in the data yields a fundamental price that can
fail to reject bubbles. Third, we have seen in Section 3.3 that, to cap-
ture subtle changes in the way the market interprets movements in the
data, model parameters—including variance effects—must be contin-
uously updated to include the most current information available to
investors. Specifically, we have shown the importance of accounting
for what might be called the “Roaring '20s Effect” as dividend growth
becomes more persistent and accurately forecastable with the pro-
gression of time. Finally, we have seen in Section 3.4 that our ability
to fit the exact timing of the peak depends in part on the discount
rate assumption we employ. We favor the bond yield-r assumption
because, as explained at the beginning of Section 2, this particular
specification allows us to work with ratios of nominal discount and
growth rates directly and thus removes a possible source of measure-
ment error in the price index used to form inflation. However, even
with a constant-» or consumption-» convention, it seems difficult to
claim that there was a bubble in the 1929 stock market.

4. Concluding Remarks

In this article we have introduced a new procedure for estimating
fundamental stock prices as the present value of expected future cash
flows. Our procedure differs from those currently employed in two
key respects. First, instead of focusing on dividend levels or dividend
growth alone, we chose the discounted dividend growth rate series y;
as our object of interest. Second, instead of assuming that dividends
grow at a constant rate from each forecasting date into the future, we
use more flexible time-series techniques and Monte Carlo simulation
to forecast future dividend paths conditional on information available
to investors at the time stock prices were actually being set in the
market. In particular, the model specifications and parameter estimates
we employ in our forecasting exercise are determined using only in-
sample data and not by mining or snooping the out-of-sample data
to find models that make sense expost. However, we do undertake a
rather thorough search and conduct several diagnostic tests to ensure
that our forecasting models contain the many elements required to be
well specified in-sample.

To examine the potential of our new procedure, we have studied
the relationship between market prices and estimated fundamentals
during the Great Stock Market Crash of 1929. The traditional quantita-
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tive evidence in support of the “conventional wisdom” that the 1920s
stock market contained a bubble relies on the observations that divi-
dends grew more slowly than prices during the late 1920s and that the
expost warranted price, based on realizations of post-1929 dividends,
does not share the spectacular rise and fall in actual prices. However,
we have argued that restrictions on the behavior of dividends and
dividend growth that are necessary to obtain the expost or Gordon
prices as “fundamental” expectations of future dividends, conditional
only on information available to investors before the boom and crash,
are not consistent with the pre-boom and crash dividend data. Thus,
tests of the present value model based on expost warranted and Gor-
don prices do not provide reliable evidence of a bubble in 1920s
stock prices. They simply reveal misspecifications in the traditional
fundamentals generating procedures employed.

Conversely, we have shown that our more general ARAR-ARCH-
ANN models of the discounted dividend growth process do capture
key features of the discounted dividend growth data, including a time-
varying mean and variance and important nonlinear effects. Using our
models, and only data on dividends, bond yields, and consumption
available to investors at the time prices were actually being determined
in the market, we have produced fundamental prices that match the
magnitude and timing of the boom and crash in 1929 stock prices. Sta-
tistical tests confirm that our fundamental prices also share important
time-series properties with actual prices and reject the hypothesis that
market prices contain a bubble. We therefore conclude that, given the
information available to investors living in the early 1920s, dividends
may well have been expected to increase by enough to warrant the
observed rise in market prices and that, as new information arrived in
the late 1920s, expectations of future dividends were revised down-
ward resulting in the observed crash in prices. Thus, although we can
never be sure exactly what market participants expected in the way
of future dividends, it does appear that there is at least one reason-
able fundamental explanation for the boom and crash in 1920s stock
prices.

Our investigation of this single historical episode, the crash of 1929,
has an important implication for the usefulness of present value re-
lationships in studying the behavior of asset prices in general. As
stated in the introduction, the boom and crash in 1920s stock prices
is often used as an extreme example of the failure of the traditional
bubble-free present value model. However, our analysis rejects the
“conventional wisdom” and instead reveals that there is indeed a fun-
damental explanation for at least this one event. Our results therefore
weaken the case for bubbles in general and suggest that a very cau-
tious and thorough investigation of the data should be undertaken
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before labeling even the most spectacular gyration in market prices
as an event at odds with the standard present value model.

Finally, recall from our discussion in Section 2.1 that to forecast
future discounted dividend growth we have used in this study only
information on past discounted dividend growth. In particular, we
have not used past market prices to forecast future dividends for fear
that, if there truly was a bubble in the market price, then we could
have inadvertently imputed a bubble into our dividend fundamen-
tals via past market price information and thus erroneously failed to
reject the bubble hypothesis. Given that we have demonstrated an ab-
sence of bubbles with a forecasting information set that excludes past
market prices, however, it now seems safer to include a much wider
variety of information—such as past market prices, earnings, macro
factors, etc.—in the forecasting information sets employed in future
applications of our procedure. Indeed, the use of larger information
sets in the application of our procedure to a more extensive analysis
of present value relationships is the subject of ongoing research.

Appendix 1: Data

All monthly data are collected from 1899:01 to 1934:12. The years 1899
and 1934 are used for lead/lag purposes so that all monthly data used
in estimations are from 1900:01 to 1933:12. The following series are
employed.

Stock Prices: S&P300 stock price index monthly from Cowles (1939)
series P1.

Producer Prices/Inflation: Monthly producer price index from
Macaulay (1938). As one would expect, this series contains a strong
seasonal pattern at monthly and quarterly frequencies and also ex-
hibits occasional spikes caused by sudden and often temporary shocks
to the index’s component factors. To account for these features, we
first deseasonalize the data with the standard X11 procedure and then
smooth out the remaining transitory spikes using a standard spline
function. Inflation rates from the resulting monthly prices g are cal-
culated as 7, = (¢ — ¢1-1)/ G-

Interest Rates: For calculations based on a constant discount rate,
we use an annual constant real rate of 8.3 percent, which equals the
average annual real return on stocks from 1871 to 1988 [data from
Shiller (19891, The monthly constant real discount rate is therefore
r=1.083"12—1 = 0.0067. When discounting cash flows at a variable
riskless rate plus constant risk premium, we use as our riskless return
the rate on 4 to 6 month prime commercial paper from Macaulay
(1938), filtered using the procedure described above for producer
prices. The monthly nominal riskless interest rate, R, is calculated from
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the annual rate, R, as R = (14 R,)"/>—1 and the monthly real interest
rate is calculated as r = (R — m)/(1 + 7). To this we add a constant
real monthly risk premium of 0.0040. This is the monthly equivalent of
a 4.9 percent real annual premium, which is the average real annual
premium of stocks over prime commercial paper between 1871 and
1988 calculated with annual data from Shiller (1989). Calculations are
performed using Shiller's numbers on the S&P 500 (series 1), S&P
500 dividends (series 2), riskless interest rate (series 4), and producer
prices (series 5). The monthly risk premium p is then calculated from
the annual numbers as p = (1 + p,)'/**> — 1. Our annual premium of
4.9 percent differs from the 6 percent reported by Mehra and Prescott
(1985) because of the different time periods studied (they used 1899
to 1978) and because they used a consumption deflator instead of
producer prices. We use producer prices because the consumption
deflator is not available on a monthly basis.

Dividends: Monthly dividends on the S&P 500 index are obtained
jointly from series C', stock prices including cash dividends, and P!,
stock prices, from Cowles (1939) as D, = (P} C},,/ C}) — P}, Since,
like producer prices and interest rates, dividends are seasonal and
spiked, we also filter dividends with the procedure outlined above
for prices and interest rates. To make sure that our filtering process
has not destroyed important properties of the data, we calculated an-
nual dividends from both the raw and filtered monthly series, where
the annual dividend is the compounded sum of the dividends from
January to December of each year. (This is equivalent to a single De-
cember lump payment; i.e. Dupmuat = 3 1oq (ML (145171 D,) The
average difference between the two annualized dividend series is a
miniscule $0.0006, on an average $3.98 annual dividend (or about
'(E% of the dividend amount), and displays no strong time-series pat-
tern. We found even less of a difference between the raw and filtered
interest rate and producer price series. This leads us to conclude that
our filter has not destroyed important properties of the data as they
pertain to our calculations of fundamental stock prices.

Consumption: Consumption is not available monthly for our time
period, but is available on a quarterly basis from 1919 onward in Balke
and Gordon (1986). However, industrial production [from Miron and
Romer (1990)] and dividends (see above) are both available monthly
over our entire 1899 to 1934 time period and, according to models
such as Lucas (1978), are both at least theoretical proxies for con-
sumption. We therefore formed a consumption proxy in the follow-
ing manner. First, we deseasonalized quarterly real consumption, in
the manner described above for prices, and formed the quarterly ra-
tio G;/ Gi—3, which we then cube-rooted and placed in each month
for the applicable quarter from 1919 to 1934. We then regressed this
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consumption ratio series on the monthly real dividend ratio and real
production ratio for 1919 to 1934 to obtain a monthly functional rela-
tionship between consumption, dividends, and production. We then
used this estimated functional relationship, along with dividend and
production data, to obtain a monthly consumption ratio proxy for
each month from 1899 to 1934.

Appendix 2: Technical Details

Monte Carlo Simulation

First, all parameter values in Equations (6) through (13) are estimated
on the 240 monthly observations from 1900:01 to 1919:12. Each of the
240 resulting in-sample 1, residuals (i = 1, ..., 240) from Equation
(10) are then divided by the corresponding date 1 — i estimate of v/b_;
(i =1,...,240) from Equation (12) to produce a time series of 240
iid. p_; (G =1,....240) innovations (e.g., t;,_ is divided by v&,_;
to produce n,_y, 1, is divided by Vb3 t0 produce -3, and so
forth). These 240 n,-; standardized residuals form the pool of i.i.d.
innovations used in subsequent Monte Carlo work.

Second, we use in-sample information from 1900:01 to 1919:12 to
obtain an out-of-sample forecast for A, in Equation (12). Third, we
randomly draw from our ii.d. n pool a value for the n, Monte Carlo
innovation and then multiply this random 5, by our forecasted Vb,
to obtain a bootstrapped ;. We then insert this bootstrapped i into
Equation (10) along with past values of €,_; to produce a simulated
€;. Values for z_; are then obtained from Equation (8) using past y,—;,
inserted into Equation (7) to obtain W(-), which is then inserted into
Equation (6) along with the simulated ¢, and past values of y,_; to
produce a simulated value for )y. This simulated y; becomes the first
element inside the parentheses in Equation (3).

Fourth, we update by one period steps 2 and 3 above (but not
step 1) to create a simulated value for yr4q, €141, 41, and by using
the just-simulated values for y;, €, 1, and b, a randomly drawn »,,
and actual data for variables dated t — 1 and earlier (note that we
still use actual data from before period ¢ only). The simulated y4,
is then multiplied by the simulated y; to form the second element in
the parentheses in Equation (3). We continue to roll out simulated
values for ¥iy2, V43, Vi, and so forth, using steps two and three and
actual data from before period ¢, until the product of the forecasted ys
falls below 0.00001. (Since forecasted—and actual—ys usually assume
values that are on average just under one, this convergence criterion
typically involves simulating y out for from 5,000 to 10,000 periods;
that is, roughly 400 to 800 years into the future.) Fifth, we calculate
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the sum of the progressive product of the simulated ys to obtain a
simulated estimate of the parenthesized term on the right-hand side of
Equation (3). This ends our first loop through the simulation process.

Step 6 involves repeating the entire simulation/roll-out procedure
described in steps 2 through 5 for a new series of randomly drawn
ns. This second trip through the simulation loop yields a second esti-
mate of the parenthesized term on the right-hand side of Equation (3).
This loop is repeated until 10,000 simulated estimates of the paren-
thesized term on the right-hand side of Equation (3) are obtained for
the data and parameter estimates from 1919:12. In step seven we then
take the average of our 10,000 simulated sums of products of ys to
yield Eyg19.12(:} in Equation (3). This average is finally multiplied by
the dividend from 1919:12 to yield our fundamental price for 1920:1,
P{;‘)ZO:I'

We then update our information set in rolling window fashion so
that the 240 observations ending in 1920:1, and the entire simulation
procedure from steps 1 through 7, are used to obtain a fundamental
price for 1920:2. Subsequent fundamental prices are produced in the
same updated forecast simulation fashion until the entire fundamental
price series for 1920 to 1933 is completed.

Model Selection

Our exact model selection routine is as follows. Note from the grid
specified in Equation (13) that the system [Equations (6) through (13)]
contains 37 = 2187 possible specifications. On the presample data
for 1900 to 1919, we estimated for the constant-r, consumption-r,
and bond yield-r y processes candidate specifications. Specification
tests, such as heteroskedasticity-robust tests for residual autocorrela-
tion and LM tests for uncaptured ARCH, were then conducted and all
specifications that did not pass these tests were discarded. The remain-
ing models were then ranked according to their ability to minimize
the Schwarz model selection criterion. Of all well-specified models,
the five specifications that produced the best Schwarz criterion val-
ues were selected for further investigation. For each of the constant-
r, consumption-r, and bond yield-r ys, we used each of our five
Schwarz-best models to generate simulated y sequences using steps
1 through 4 of the Monte Carlo procedure described above and only
data from before 1919. The models that produced simulated ps that
had properties closest to the actual sequence of ys from 1900 to 1919
(e.g., similar means, variances, etc.) were finally selected as our ulti-
mate model specifications for use in the forecasting of y out-of-sample
for 1920 to 1933.
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