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ABSTRACT 

The use of regression-based specification tests, such as the nR2 form of 

the Lagrange Multiplier test, has become quite widespread over the last 20 

years. The popularization of the nR2 form of the Lagrange Multiplier (LM) 

test, perhaps the most widely used class of regression-based tests, has come 

about in large part from the ease of its application to many tests of nonlinear 

restrictions and its asymptotic equivalence to Likelihood Ratio and Wald 

tests. Properly performed, these regression-based tests invariably include 

regressors which are orthogonal by construction to the dependent variable 

of the regression. The purpose of this paper is to motivate the inclusion 

of such variables by investigating implications for the test size and power if 

these regressors are erroneously omitted. It is straightforward to show that 

both the size and power of the test are adversely affected by omitting these 

regressors. 
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1. INTRODUCTION 

KAMSTRA 

The use of regression-based specification or diagnostic tests has become 

quite widespread over the last 20 years. The popularization of the nR2 form 

of the Lagrange Multiplier (LM) test, perhaps the most widely used class of 

regression-based tests, has come about due to its ease of application to many 

tests of nonlinear restrictions and its asymptotic equivalence to Likelihood 

Ratio (LR) and Wald tests. The notation used here has n as the sample 

size and the R2 comes from the auxiliary OLS regression of the errors in 

estimation of the restricted null model on an appropriate set of regressors, 

pre-supposing normality and additive errors. The equivalence of the LM, LR 

and Wald tests holds under fairly general conditions. 

A device frequently used to derive the appropriate set of regressors for 

the auxiliary regression is to manipulate mechanically the equations of the 

first and second derivative matrices of the Gaussian likelihood until the nR2 

just falls out. This exposes the presence of a subset of regressors, call these 

X ,  which are uncorrelated by const~uction with the dependent variable of 

the auxiliary regression, the errors in estimation of the restricted null model. 

An interesting question is whether these regressors X are required for size 

considerations, power considerations or both. 

Consider the example of the LM test for the inclusion of Z in the fol- 

lowing model: 
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the auxiliary regression, the errors in estimation of the restricted null model. 

An interesting question is whether these regressors X are required for size 

considerations, power considerations or both. 
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lowing model: 

(1.1) 

Ho : , = 0 HI : , i- 0 (1.2) 

1436 KAMSTRA 

1. INTRODUCTION 

The use of regression-based specification or diagnostic tests has become 

quite widespread over the last 20 years. The popularization of the nR2 form 

of the Lagrange Multiplier (LM) test, perhaps the most widely used class of 

regression-based tests, has come about due to its ease of application to many 

tests of nonlinear restrictions and its asymptotic equivalence to Likelihood 

Ratio (LR) and Wald tests. The notation used here has n as the sample 

size and the R2 comes from the auxiliary OLS regression of the errors in 

estimation of the restricted null model on an appropriate set of regressors, 

pre-supposing normality and additive errors. The equivalence of the LM, LR 

and Wald tests holds under fairly general conditions. 

A device frequently used to derive the appropriate set of regressors for 

the auxiliary regression is to manipulate mechanically the equations of the 

first and second derivative matrices of the Gaussian likelihood until the nR2 

just falls out. This exposes the presence of a subset of regressors, call these 

X, which are uncorrelated by construction with the dependent variable of 

the auxiliary regression, the errors in estimation of the restricted null model. 

An interesting question is whether these regressors X are required for size 

considerations, power considerations or both. 

Consider the example of the LM test for the inclusion of Z in the fol­

lowing model: 

(1.1) 

Ho : , = 0 HI : , i- 0 (1.2) 



REGRESSION-BASED SPECIFICATION TESTS 1437 

where X, n x k,  and Z,n x q are independent of E N(0, I,,), and P and 

y are fixed parameters. It is straightforward to show that the LM test can 

be written as nR2 from the auxiliary regression of e = ( y  - Xp) on X 

and 2, where p = ( X t X ) - ' X t y .  This follows provided standard regularity 

conditions obtain. See, for example, Breusch and Pagan (1980). 

The need to include Z in the auxiliary regression is perhaps obvious, 

as correlation between Z and e supports the contention that Z belongs in 

model (1.1). The derivation of the LM statistic makes clear that X is also 

essential for the auxiliary regression, but the X are uncorrelated by construc- 

tion with e, so that the need for X is perhaps less obvious. The presence of 

X in the auxiliary regression is not typically mentioned in journal articles, 

such as Breusch and Pagan (1980), or in texts, such as Chow (1983), Judge 

et. al. (1985) or Lehmann (1986). (Exceptions are MacKinnon (1992) and 

Davidson and MacKinnon (1993). In the context of Gauss-Newton regres- 

sions - that is, artificial regressions designed for specification tests among 

other uses - MacKinnon (1992) and Davidson and MacKinnon (1993) moti- 

vate the inclusion of regressors which are uncorrelated by construction with 

the dependent variable). 

The contribution of this paper is to provide a pedagogically convenient, 

clear and formal presentation in the style of White's (1984) Asympto t i c  The- 

ory f o r  Ecolaometricians to show that regressors orthogonal to the depen- 

dent variable of the auxiliary regression are required for both power and size 

considerations. The presentation does not require a Maximum Likelihood 

framework, and is thus applicable to a wide class of regression-based tests. 

Although the intuition for this result is simple, I believe the formal analysis 

is quite helpful for driving home both this result and in general the need 

for care when forming regression-based specification tests. Examples of such 
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specification tests include LM nR2 tests as well as specification tests based 

on Gauss-Newton regressions as MacKinnon (1992) presents (which actually 

include the LM nR2 tests as a special case). 

In Section 2, I motivate the inclusion of X  regressors uncorrelated with 

the dependent variable of a regression-based test, and I provide a demon- 

stration that the inclusion of X  is necessary following from power and size 

considerations. In Section 3, I discuss situations in which it is common to 

fail to include the necessary regressors. Section 4 concludes. 

2. REGRESSION-BASED SPECIFICATION TESTS 

Consider again the LM test of model (1.1) above. Notice that 2 may 

be decomposed into orthogonal terms X a  and Z,, with suitable choice of a, 

without imposing any restriction on Z. 

2, = Z - X a  and EIXIZ,] = 0. 

Special cases include the degenerate ones with either Z, or a identically zero. 

It is straightforward to show that the R2 from a regression of e = (y - xB) 

on X  and Z,  where ,b = ( X ' X ) - l X ' y ,  is equivalent to the R2 from the 

regression of e on 2,. This is not true in general, but follows here because e 

is orthogonal to X by construction. The proper form of the regression-based 

LM test controls for correlation between Z and X  with the inclusion of X in 

the auxiliary regression, and this is the only purpose of X  in the auxiliary 

regression. Failing to control for X  in the auxiliary regression lowers both 

power and size. Ruling out degenerate cases, the R2 is strictly downward 

biased with the omission of X  in the auxiliary regression, hence the inclusion 

of X  is necessary for proper power and size. A demonstration of this follows. D
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2.1 THE MODEL AND ASSUMPTIONS 

Suppose 

A l )  yt = X t P +  Zty + e t ,  Zt = Zt, ,  + X t n ,  t = 1 ,..., n ;  

A2) n- 'X1e  3 0, n-'Z:e --% 0, n - ' X ' Z ,  2 0;  

A3) n-I 2: 2, 3 M,, and n - ' X ' X  5 M,, where M ,  and M, are 

finite and positive definite. These restrictive assumptions are made for no- 

t,ational convenience and expositional clarity. It should be noted that these 

assumptions could be considerably weakened with no substantive change to 

the results presented here. 

Immediate implications of these assumptions include the following: 

The power of the LM test of the hypothesis (1.2) is investigated in Section 

2.2, then the size is investigated in Section 2.3. In each case the implications 

of (erroneously) omitting X from the auxiliary regression of the LM test is 

determined by comparing the test statistic resulting from an auxiliary regres- 

sion excluding X  to the test statistic resulting from an auxiliary regression 

includ~ng X .  The nR2 LM test statistic can be derived under the restriction 

E N N ( 0 ,  a21n). where a2 > 0, finite. Regression-based test statistics can 

often be derived under much weaker distributional assumptions however, as 

Koenker (1981) demonstrates. The results to be presented for the power and 

size of the LM test statistic do not require the assumption of normality. 

2.2 T H E  TEST UNDER HI: POWER CONSIDERATIONS 

Notice that the true data generating process may be rewritten as 

y = X ( p  + cry) + Z*-Y + E .  
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Defining /? = (X'X)-lX'y,  and given A1-A3, we have ,8 - (P + a y )  = +(I) .  

Define 

e =  y-X/3 

Consider first the regression of e on Z alone. Call this regression (A). Define 

jA = (2'2)-'Z'e. The R2 for regression (A) is 

as n-'(P + a y  - ~) 'x ' z  and n-'e'Z are op(l).  Further, 

so that we have 
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Defining S = (X' X)-l X'y, and given AI-A3, we have S - (;3 + QI) = op(I). 

Define 

e = y - xS 

= Z'I + E + X (;3 + Q 1 - S) 
= Z'I + E + op(I). 

Consider first the regression of eon Z alone. Call this regression (A). Define 

"YA = (Z'Z)-lZ'e. The R2 for regression (A) is 

R 2 A' Z'ZA / ' A = IA ,A e e 

= e'Z(Z'Z)-lZ'e/e'e. 

Notice that 

e' Z(Z' Z)-l Z' e/ e' e 

= (Z., + E + X(;3 + Q,- S))' Z(Z'Z)-l z' 

x (Z.,+E+X(;3+Q,-S))/e'e 

= n-1 (Z., + E + X(;3 + Q,- S))' Z(n- 1 Z'Z)-l Z' 

X n-1 (Z., + E + X(;3 + Q,- S)) /(n-1e'e) 

= ,'(n-1 Z:Z)(n- 1 Z'Z)-ln- 1 Z'Z.,/(n-1e'e) + op(l) 

so that we have 

,'Mz(Mz + Q' MxQ)-l M z, 
(>2 + ,'Mz , 

(2.1 ) 
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Now consider the regression of e on both Z and X .  First residualize Z 

with respect to X ,  and define this residual to be 2,. 

2, = z - x ( X 1 X ) - ' X f Z  

= 2, + X a  - X ( X I X ) - ' X 1 ( 2 ,  + Xcu) 

= z* - x(x'x)-'x'z* 
= Z ,  - x ( ~ - ' X ' X ) - ' ( ~ - ' X ' Z , )  

= Z* + o p ( l )  

Note that e  is orthogonal to X by construction, so that e regressed on 2 and 

X yields numerically identical residuals to e regressed on 2, alone. David- 

son and MacKinnon (1993) refer to this result as the Frisch-Waugh-Love11 

theorem and a proof of this result can be found there. 

Call the regression of e on 2, regression (B). Define -j.B = (2 :2 , ) - '2 :e .  

The RZ for regression (B) is 

as Z ,  = Z ,  + o p ( l ) .  Notice that 

Since n-'(P + cuy - ~ ) ' x ' z ,  and n-le1Z, are o p ( l ) .  Further, as 
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Now consider the regression of e on both Z and X. First residualize Z 

with respect to X, and define this residual to be Z •. 

z. = Z X(X' X)-J XI Z 

= Z. +XO' X(XIX)-lX'(Z. +XO') 

= Z. - X(XIX)-l X' Z. 

= Z. - X(n- I X'X)-I(n- I X'Z.) 

= Z. + opel) 

Note that e is orthogonal to X by construction, so that e regressed on Z and 

X yields numerically identical residuals to e regressed on Z. alone. David­

son and MacKinnon (1993) refer to this result as the Frisch-Waugh-Lovell 

theorem and a proof of this result can be found there. 

Call the regression of eon Z. regression (B). Define 18 = (Z~Z.)-I e. 

The R2 for regression (B) is 

as Z. = 

R2B " Z"Z' , I ' 18 •• /'8 e e 

+ opel). Notice that 

e' Z.(Z~z*)-1 Z~ele'e 

= (Z.,+c+X(,8+(Yf-,8))' Z.(Z~Z.)-lZ~ 

x (Z.,+E+XCJ3+O'/,-,8))le'e 

n-1 (Z*/, + c + X(,8 + O'/, - ,8))' Z.(n- 1 Z~Z.)-l Z: 

x 71-
1 (Z.1 + € + X(J3 + <XI - ,8)) I(n-Ie'e) 

= /,'(n- I Z:Z.h/(n-1e'e) + opel) 
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we have 

Now compare R i ,  equation (2.1), calculated excluding X  in the auxiliary 

regression, to R i ,  equation (2.2), calculated including X  in the auxiliary 

regression, by contrasting M z ( M z  + atMXoi)- 'M,  and M,. As a ' M X a  is 

positive definite, M,(Mz+alM,a)- 'M,  < M ,  so that R i - R i  = O p ( l )  > 0. 

Hence the test statistic nRi  must under-reject when the null is false, so that 

erroneously omitting X from the auxiliary regression lowers the power of the 

test. To yield the result with a strict inequality, rule out the degenerate cases 

cu = 0 and 2, = 0. 

2.3 THE TEST UNDER Ho: SIZE CONSIDERATIONS 

Now y = 0 so that y = X p  + E .  Define e  = y - ~ , b  = E + X ( p  - b ) .  
Consider first the regression of e on Z  alone. Call this regression (C). Define 

jc = ( 2 ' 2 ) - ' Z ' e  

= (z'z)-'z' ( r  + X ( P  - 8)) 
= (z'z)-lz' ( I  - x(xlx)-lx') € 

= (z'z)-' (2' - z ' X ( X ' X ) - l X ' )  r 

= (2'2)-' (2: + a ' X 1  - (2, + X o i ) ' X ( X ' X ) - ' X I )  E 

= (2'2)-' (2: - z : x ( x l x ) - ' X I ) )  E 

= (2'2)-9: ( I  - x(xlx)- 'x')  € 

= (2'2)-'2: (€ + X ( p  - ,b)) 

= ( Z I Z ) - ' Z i e .  
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'( -lZ'Z) /( -1') P ,'Mz , ,n ", n ee---+ 2 ' 
IJ + ,'Mz , 

we have 

(2.2) 

Now compare R~, equation (2.1), calculated excluding X in the auxiliary 

regression, to R~, equation (2.2), calculated including X in the auxiliary 

regression, by contrasting Mz(Mz + ex' Mxa)-l Mz and 114z. As a'Mxa is 

positive definite, Mz(Mz+a' Mxa)-l Mz < Mz so that R1-R~ = Op(l) > O. 

Hence the test statistic nR~ must under-reject when the null is false, so that 

erroneously omitting X from the auxiliary regression lowers the power of the 

test. To yield the result with a strict inequality, rule out the degenerate cases 

a = 0 and Z, = o. 

2.3 THE TEST UNDER Ho: SIZE CONSIDERATIONS 

Now, = 0 so that y = X{3 + E. Define e = y - xt = E + X(f3 - t). 
Consider first the regression of eon Z alone. Call this regression (C). Define 

)c = (Z'Z)-lZ'e 

= (Z'Z)-lZ' (E+X(f3 - t)) 
= (Z' Z)-l Z' (I - X(X' X)-l X') E 

= (Z'Z)-l (Z' - Z'X(X'X)-l X') E 

= (Z' Z)-l (Z; + a'X' - (Z, + X a)' X(X' X)-l X') E 

= (Z'Z)-l (Z; - Z~X(X'X)-l X')) E 

= (Z'Z)-l Z~ (I - X(X'X)-l X') E 

= (Z'Z)-lZ; (E+X(f3 - t)) 
= (Z'Z)-lZ~e. 

1442 KAMSTRA 

'( -lZ'Z) /( -1') P ,'Mz , ,n ", n ee---+ 2 ' 
IJ + ,'Mz , 

we have 

(2.2) 

Now compare R~, equation (2.1), calculated excluding X in the auxiliary 

regression, to R~, equation (2.2), calculated including X in the auxiliary 

regression, by contrasting Mz(Mz + ex' Mxa)-l Mz and 114z. As a'Mxa is 

positive definite, Mz(Mz+a' Mxa)-l Mz < Mz so that R1-R~ = Op(l) > O. 

Hence the test statistic nR~ must under-reject when the null is false, so that 

erroneously omitting X from the auxiliary regression lowers the power of the 

test. To yield the result with a strict inequality, rule out the degenerate cases 

a = 0 and Z, = o. 

2.3 THE TEST UNDER Ho: SIZE CONSIDERATIONS 

Now, = 0 so that y = X{3 + E. Define e = y - xt = E + X(f3 - t). 
Consider first the regression of eon Z alone. Call this regression (C). Define 

)c = (Z'Z)-lZ'e 

= (Z'Z)-lZ' (E+X(f3 - t)) 
= (Z' Z)-l Z' (I - X(X' X)-l X') E 

= (Z'Z)-l (Z' - Z'X(X'X)-l X') E 

= (Z' Z)-l (Z; + a'X' - (Z, + X a)' X(X' X)-l X') E 

= (Z'Z)-l (Z; - Z~X(X'X)-l X')) E 

= (Z'Z)-l Z~ (I - X(X'X)-l X') E 

= (Z'Z)-lZ; (E+X(f3 - t)) 
= (Z'Z)-lZ~e. 



REGRESSION-BASED SPECIFICATION TESTS 

The R2 for regression (C)  is 

R: = j&Z'Z jC/e1e 

= ~'Z,(Z'Z)-'(Z'Z)(Z'Z)-~Z~~/~'~ ( 2 . 3 )  

= e'Z* ( Z t Z ) - I  Z: ele'e. 

Now consider the regression of e  on both Z and X. First residualize Z with 

respect to X I  and define this residual to be z,, as above. Recall that e is 

orthogonal to X by construction, so that e  regressed on Z and X is equivalent 

to e  regressed on 2, alone. Call the regression of e  on 2, regression (D).  

Define ;iD = (2: z+)-'z:~. The R2 for regression (D) is 

R& = + $ : ~ * + ~ / e ' e  

= e'Z*(Z: ~ * ) - l Z ; e / e ' e .  

Note that 2:e = Z : ( I  - X ( X t X ) - ' X 1 ) e  and X ( X I X ) - ' X ' e  

struction, so that ZLe = Zie. Hence 

RZ, = e ' . Z , ( ~ : Z , ) - ' ~ ; e / e ' e .  

0 by con- 

(2.4) 

Now compare Rg, equation (2.3), calculated excluding X in the auxiliary 

regression, to RL, equation (2.4), calculated including X in the auxiliary 

regression, by contrasting (2'2)-' and (z:&,)-' . Recall that n-' Zl Z, --% 

M z  and 2, = 2, + o p ( l )  SO that n - l & 2 ,  5 M z  Also recall that 

n - ' ( Z ' Z )  --% M z  + o 1 M x o  and Mx is OP(1) .  Hence n - ' 2 ' 2  - n - ' i : i ,  

-% O p ( l )  and nR& > nR&. As nR& N ,y;, nR& must under-reject when 

the null is true, so that erroneously omitting X from the auxiliary regression 

biases the size of the test. The Xi distribution of Rg follows under standard 

regularity conditions and can be derived in the manner of Koenker (1981). 

To yield the result with a strict inequality, rule out the degenerate cases 

o = 0 and Z ,  = 0. D
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The R2 for regression (C) is 

R~ = f'cZ'Z~c/e'e 

(2.3) 

= eIZ.(Z'Z)-lZ~e/ele. 

Now consider the regression of e on both Z and X. First residualize Z with 

respect to X, and define this residual to be Z., as above. Recall that e is 

orthogonal to X by construction, so that e regressed on Z and X is equivalent 

to e regressed on Z. alone. Call the regression of e on Z. regression (D). 

Define 'YD = (Z~Z.)-lZ;e. The R2 for regression (D) is 

R2 "Z"Z"/' D = /D • • /D e e 

'Z' (Z" Z' )-1Z" / ' = e • ., .e e e. 

Note that Z' e • Z~(I - X(X'X)-lX')e and X(X'X)-lX'e o by con-

struction, so that Z~e = Z;e. Hence 

R 2 'z (Z"Z' )-1Z' /' D = e • .' .e e e. (2.4) 

Now compare R~, equation (2.3), calculated excluding X in the auxiliary 

regression, to Rb, equation (2.4), calculated including X in the auxiliary 

regression, by contrasting (Z'Z)-1 and (Z;Z.)-1. Recall that n-1Z;Z. ~ 
, " p 

Mz and Z. = Z. + op(l) so that n-1 Z;Z. ----+ Mz. Also recall that 

n-1(Z'Z) ~ Mz + 0/ Mxex and Mx is Op(l). Hence n-1 Z'Z - n-1 Z;Z. 

~ Op(l) and nRb > nRb. As nRb rv X~, nRb must under-reject when 

the null is true, so that erroneously omitting X from the auxiliary regression 

biases the size of the test. The X; distribution of Rb follows under standard 

regularity conditions and can be derived in the manner of Koenker (1981). 

To yield the result with a strict inequality, rule out the degenerate cases 

ex = 0 and Z. = o. 
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The preceding calculations reveal that the exclusion of X from the set 

of regressors in the auxiliary regression will downward bias the R2 of the 

procedure under both the null and alternative hypotheses if and only if cu # 0 
and 2, # 0, that is, if Z is not orthogonal to X and Z is also not a perfect 

linear function of X .  The inclusion of X in the auxiliary regression is required 

to control for linear correlation between Z and X ,  and provides the correct 

size and power of the LM test. It is appropriate to include X in the regression 

because e zs, and Z m a y  n o t  be, orthogonal to X. Omission of X in the 

auxiliary regression systematically biases the test statistic downwards under 

both the null and alternative. 

3. APPLICATIONS 

An interesting question is, when might we encounter such a problem? 

That is, when do we need to worry about the inclusion of auxiliary regressors 

in conducting regression-based specification tests? Working with economic 

data, in particular macro economic data, presents us with a great deal of 

instances where manipulated data sets are the only ones to work with. Price 

indices, labour force data series, growth rates of sectors and the entire econ- 

omy itself, are all routinely deseasonalized, and pre-whitened. Many data 

series are cleaned by the removal of outliers, and data is detrended. and all 

these manipulations can inadvertently lead to exactly the sort of problem 

outlined here. This sort of data manipulation is not the exception in empir- 

ical work. In fact, in using macroeconomic data, such adjustments are the 

rule. See, for instance, Harvey (1997) and Nelson and Kang (1981). and the 

Journal  of E c o n o m e t ~ i c s  Annals 1993 issue on seasonality and econometric 

models. 

If all the data have been similarly orthogonalized, the problems outlined 

in this paper are not applicable. But if this is not the case - if we have a 
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deseasonalized dependent variable and we are testing for inclusion of a raw 

explanatory variable series for instance - the concerns raised here are valid, 

and this seasonality must be controlled for in the auxiliary regression. 

4. SUMMARY 

The nR2 form of the LM test is often suitable for standard hypotheses, 

as well as for hypotheses which are difficult to test with LR or Wald tests, 

such as tests of nonlinear restrictions with a linear null model. Together with 

the asymptotic equivalence of the LM, LR and Wald tests under fairly general 

conditions, this provides powerful motivation for the usefulness of the LM 

test. There are also a large collection of similar regression-based specification 

and diagnostic tests. These tests, as well as the LM test, often include 

regressors which are orthogonal by construction to the dependent variable of 

the regression test. A regression of the dependent variable on these regressors 

alone would have an R2 of 0. The variables used in the auxiliary regression 

of these tests are not well motivated by a simple mechanical derivation of the 

test form. In this paper, the regressors which are orthogonal by construction 

to the dependent variable of the auxiliary regression are demonstrated to be 

necessary for both power and size considerations. 

It must be emphasized that the sort of situation which leads to this 

problem is not the exception in applied work, but the rule. When one ma- 

nipulates data prior to empirical analysis, one must be careful to conduct 

regression-based specification tests with proper attention to the inclusion of 

auxiliary regressors. Failure to do so has unambiguous impact on size and 

power. 
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