
Journal 01 Forecasting, Vol. 15,49-61 (1996) 

Forecast Combining with Neural Networks 

R. GLEN DONALDSON 
University of British Columbia, Canada 

MARK KAMSTRA 
Simon Fraser University, Canada 

ABSTRACT 

This paper investigates the use of Artificial Neural Networks (ANNs) to 
combine time series forecasts of stock market volatility from the USA, 
Canada, Japan and the UK. We demonstrate that combining with nonlinear 
ANNs generally produces forecasts which, on the basis of out-of-sample 
forecast encompassing tests and mean squared error comparisons, 
routinely dominate forecasts from traditional linear combining procedures. 
Superiority of the ANN arises because of its flexibility to account for 
potentially complex nonlinear relationships not easily captured by 
traditional linear models. 
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When combining n individual forecasts II' ... , In' the single combined forecast F is traditionally 
obtained by selecting 13 weights in the linear model F = 130 + Lt. I 13Ji' a popular example being 
the simple average across forecasts (Le. 130 = 0, f3 i = 1/ n"'l i). I However, a linear combination 
may not be optimal if the individual forecasts come from nonlinear models or if the true 
underlying conditional expectation is a nonlinear function of the information sets on which the 
individual forecasts are based. Consider, for example, the case of a dependent variable 
y = exp(Itsl Xi) + E, where E is an innovation and XI' "" Xn are n explanatory variables known 
to us. If each of the i= 1, ... , n individual forecasts are produced by Ii: aiexp(Xi), then any 
linear combination of the n individual forecasts will be inferior to the nonlinearly combined 
forecast F = 11:. I /;/ a i • 

In this paper we investigate the incremental value of going from traditional linear forecast 
combining procedures to a particular class of nonlinear combining procedures based on 
Artificial Neural Networks (ANNs). Since ANNs have the ability to approximate arbitrarily 
well a large class of functions, they provide considerable flexibility to uncover hidden 
nonlinear relationships between a group of individual forecasts and realizations of the 

I The forecast combining literature is much too vast to adequately cite here. For excellent reviews of the forecasting 
literature and discussions of traditional weight-selection techniques, however, see Clemen (1989), Granger (1989) and 
Min and Zellner (1993). 
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variable being forecasted. Indeed, we develop in this paper 'optimally' combined ANN 
forecasts which generally outperform forecasts from a variety of traditional linear combining 
methods. 

In the remainder of this paper we first present our ANN modelling procedure and 
describe the international stock market data we use to compare our nonlinear ANN to 
traditional linear combining methods. We then present model summary statistics and evaluate 
the combined forecasts on the basis of mean squared error, mean absolute error, and forecast 
encompassing tests to show that nonlinearly combined ANN forecasts perform at least as 
well as, and often better than, forecasts from a variety of traditional linear models. We 
conclude with a discussion of the practical significance of our results and a brief 
demonstration to show that the superiority of our ANN arises because of its flexibility to 
account for potentially complex nonlinear relationships not easily captured by traditional linear 
combining methods. 
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Figure 1. Example of a neural network. One linear and three nonlinear components. 
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ANN FORECAST COMBINING 

An ANN is essentially a collection of nonlinear transfer functions which relate some output 
variable(s) of interest to some input variables, which may themselves be functions of even 
deeper explanatory variables.2 One of the most commonly employed transfer functions in the 
ANN literature is the logistic Y = a + (1 + exp[ - (c + bx)]) -I in which the input x may itself be 
a subordinate function g(z), where Z is an element-or an even further function of other 
elements-of the forecasting information set. Fully linear functions, such as Y = a + bx, can be 
used to augment the nonlinear functions if desired. 

A simple network composed of one linear and three logistic functions is depicted in Figure 1. 
The network's input x is measured on the horizontal axis and output Y on the vertical 
axis, where Y = Ii ~ I Yi with YI = 1- O.lx, Y2 = -0.5 + (1 + exp[ - (75 + 40x)]) -I, Y3 = -0.5 + 
(1 +exp[ - (0+2X)J)-I, and Y4= -1 + (1 +exp[ - (170-85x)])-1 being the four'infonnation 
nodes' of the network that filter infonnation on the input x. Notice from the definitions of Yi that, 
when x< -2, Y2'" -0.5, Y3'" -0.5, and Y4"'0, so Y's behaviour is detennined largely by the slope 
of linear node YI: i.e. Y = Ii _ I Yi'" -O.Ix. However, as x rises past about -2, Y2 rapidly increases 
in value to essentially achieve its maximum of Y2 = 0.5 by the time x reaches roughly -1.6. The 
response of node Y2 therefore brings the network value of Y = I. Yi from 0.2 up to 1.2 as x rises 
from -2 to about -1.6, as seen in Figure 1. Then, as x continues its increase towards zero, the Y3 
node begins to activate-although its response is less immediate given Y3'S smaller gain (Le. 2x 
instead of 40x)-so that, by the time X= 1.5, Y",1.8. Finally, as x rises past 2, the Y4 node 
deactivates to fall from ° to -1 so that Y falls from 1.8 down to 0.8. The effect on Yof any further 
increases x are then determined largely by the linear node Y I, with slope -0.1, as seen in Figure 1. 

The final shape produced by Figure 1 's ANN is a complicated hump-pattern in which different 
segments have different slopes. By extension, one can see that, with many nodes activating and 
deactivating with different slopes and intercepts over various ranges of x, one could produce as 
an output response Y almost any desired function of the input x (or, with higher dimensionality, 
any desired function of a group of inputs XI' ... , xn ). Indeed, as demonstrated by authors such 
as Hornik, et al. (1989, 1990), ANNs have the ability to approximate arbitrarily well a large 
class of functions. 3 ANNs are therefore ideally suited to the problem of forecast combining 
when the optimal combination of individual forecasts is potentially nonlinear. 

In this paper we use ANNs to obtain a single consensus forecast F, as the potentially 
nonlinear combination of two individual forecasts fl., and A,. To do this, let A and SA denote 
the in-sample mean and in-sample standard deviation, respectively, of the variable being 
forecasted out of sample. The ANNs we investigate are then of the following fonn: 4 

k p 

F,=f3o+ LPjjj.,+ LOi'P(Z'Yi) (1) 
)-1 i-I 

2 Even a cursory discussion of the many applications to which ANNs have been put would consume several pages of 
text and is therefore well beyond the scope of this paper. For an excellent review of the econometric issues involved 
and some discussion of ANNs' many applications, however, see Kuan and White (1994) and Hertz et al. (1991). 
3 For funher technical details see Hertz et al. (1991), Hornik (1991), Stinchcombe and White (1994) and White (1989, 
1990). 
'The model we employ is formally referred to as a single hidden-layer ANN (where the number of nodes will be 
selected optimally by reference to the data). In principle, an ANN can consist of many functional layers, with 
intermediate outputs used as inputs to ever higher layer of nodes until the ultimate output is finally produced. In 
practice, however, ANN researchers (e.g. White, 1990) have proven that, provided a sufficient number of nodes are 
placed on the first layer of the ANN, higher layers are not needed to establish a satisfactory connection between the 
initial raw inputs and the final output. For simplicity, we therefore entenain only one hidden layer in equations (1)- (3). 
The network whose output is graphed in Figure 1 is also a single hidden-layer ANN (with four nodes: YI' Y2' y;, y,). 
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'I' (zrYi) = (1 + exp[ - (YO.i + YI,iZl,r + Y2.hr)])-1 

Zj.r=(fj.r-A)/SA j=I,2 

kE {O, 2} pE {O, 1,2, 3} 
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(2) 

(3) 

Equation (3) gives the nonnalization of forecasts from each individual model required to 
prepare these forecasts for inputs into the logistic infonnation node given in equation (2). 
Equation (1) states the manner in which the outputs from these nodes are to be weighted in 
producing the final combined forecast. Since p E {O, 1, 2, 3}. up to three logistic nodes are 
pennitted in the final network. The special case of a traditional linear model (i.e. k = 2, P = 0) is 
also pennitted. 

To implement estimation of equation (1) we follow the computationally simple approach of 
first choosing the Yi with a unifonn random number generator, so the Yi lie between -1 and + I, 
and then estimating the 0 and f3 parameters. Work by Stinchcombe and White (1994) yields a 
universal approximation result for ANNs with such an arbitrary choice of y and, in practice, 
little difference is made in model perfonnance with deviations from this convention. We 
therefore randomly choose 10 different sets of y's which, together with k E {O, 2} linear and 
p E {O, 1, 2, 3} nonlinear nodes, produce 60 different ANN model specifications plus the purely 
linear model k = 2, p = O. Since we do not know the true structure of the conditional expectation 
relationship, we employ a standard tenfold cross-validation selection procedure to choose the 
'best' model specification from among the 61 possible specifications.s Infonnation on particular 
specifications chosen for our study is provided below. 

To gauge the perfonnance of our nonlinear ANN we also estimate three popular fully linear 
combining models: the simple average of individual forecasts (AVE), the model in (1) with 
p === 0 and the f3s estimated by Ordinary Least Squares (OLS), and the model in (1) with p === 0 
and the f3s estimated by the robust method of Mean Absolute Deviations (MAD).6 Use of such 
traditional combining procedures is discussed in Clemen (1989) and Granger (1989) and the 
many references cited therein. 

FORECAST DATA 

Individual forecasts for use in our combining exercise are forecasts of the volatility in daily 
stock returns on the US Standard and Poor's 500 Stock Index (SP500), the Japanese Nikkei 
Stock Index (NIKKEI), Canada's Toronto Stock Exchange Composite Index (TSEC) and 
London's Financial Times Stock Exchange Index (FTSE)-for the period January 1969 to 
September 1987-as produced by two popular models of stock returns volatility: the MA 
variance model (MA V) and the GARCH(1,l) model (GAR). We employ these data for two 

S Cross-validation calls for estimating the model on a subset of the in-sample data and then using the estimated model 
to forecast the remaining panion of the in-sample data. We then collect the 'out-of-sample' forecasts and repeat the 
process, leaving out a different subset of the in-sample data each time, until we have produced 'out-of-sample' 
forecasts for the entire in-sample data set. (A cross-validation estimation which has 1/ N of the data omitted at a time 
is called an N-fold cross-validation.) The model specification which produces in-sample cross-validated forecasts with 
the lowest Mean Squared Error is then selected as 'best'. For a more complete discussion of this model selection 
procedure and its optimality propenies, see Hjonh and Holmqvist (1981), Kavalieris (1989) and Stoica, et al. (1986). 
6We choose the MAD estimator, as employed in Hallman and Kamstra (1989), over other robust possibilities, such as 
the Bayesian time-varying weight selection methods of Min and Zellner (1993), for two reasons. First, authors such as 
Min and Zellner (1993) have demonstrated that there is little benefit to using Bayesian techniques over classical 
methods at the panicular forecasting horizon we investigate in our paper. Second, MAD is more easily implemented 
and thus more likely to be employed by practitioners. 
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reasons. First, while frequently combined quarterly or annual macroeconomic and accounting 
data offer a somewhat limited number of observations, the daily stock market data contain many 
thousands of observations, thereby providing the power necessary to discriminate between the 
various combining methods. Second, the MA V and GARCH stock volatility forecasting models, 
as specified below, are widely employed in the financial econometrics literature and have well 
understood properties that can aid us in interpreting test results and suggest useful specification 
checks of the individual and combined models. 7 

To obtain the MA V and GARCH individual forecasts, we follow the stock volatility literature 
and define R, as the daily stock return with R, = Po + PIR,_I + c" where c, is an error with zero 
mean and conditional variance E(c} II,) = 0,2 (appropriately normalized, Cr can be considered 
stationary). Our objective is to forecast a}: stock returns volatility. Let Po and PI be estimates 
of the parameters Po and PI, and let e, = R, - Po - PI R, _ I' The MA variance model has the 
conditional variance forecast: MA V, = (1/ n )"i?= I e; _ i , with n chosen to minimize the Schwarz 
Criterion and the parameters Po and PI estimated with OLS. The GARCH(I,I) model has the 
conditional variance forecast: GAR, = a o+ aIGAR,_1 + a2e;_I' with parameters Po, PI' a o, a j 

and a2 estimated jointly with maximum likelihood methods. Explanations for why the MA V 
and GARCH models are widely employed for the purpose of forecasting stock market volatility 
can be found in Bollerslev et al. (1991) and Pagan and Schwert (1990) and the numerous 
references cited therein. 

The GARCH and MAV forecasts we use in our study are one-step-ahead out-of-sample 
forecasts beginning the first day of trading in January 1980. Daily data from the first day of 
1969 to the last day of 1979 are used to estimate the MA V and GARCH model parameters and 
then produce the one-step-ahead out-of-sample MA V and GARCH forecasts for the first trading 
day of 1980. We next update our data set-while keeping sample size constant-by adding the 
first trading day of 1980 and dropping the first observation from 1969. We then re-estimate the 
MA V and GARCH models and produce one-step-ahead out-of-sample forecasts for the second 
day in 1980. This recursive updating and one-step-ahead out-of-sample forecasting procedure is 
repeated until one-step-ahead out-of-sample MAV and GARCH forecasts of daily returns 
volatility are produced for each trading day from 1 January 1980 to 30 September 1987. These 
constitute the individual out-of-sample forecasts used in the combining exercise. For our 
purposes, the most important feature of these forecasts is that the MA V and GARCH models 
used to produce them employ partially non-overlapping information sets; MA V uses as least 
twelve times as many lags of the c2 error as GARCH, but does not use any lagged conditional 
variance estimates. Thus, there may be an advantage to using a combined forecast as opposed to 
either of the individual forecasts. 8 

The next step in our procedure is to divide the MAV and GARCH out-of-sample forecasts 
into two subsamples: 1 January 1980 to 21 June 1983, and 22 June 1983 to 30 September 1987. 
Data on MAV and GARCH forecasts from 1 January 1980 to 21 June 1983 are then used, with 
the cross-validation procedure described in the previous section, to select the following optimal 

7Note that our data extend only to September 1987 in order to avoid including the infamous stock market crash of 
October 1987. Out-of·sample model comparisons, such as ours, make sense only in the context of stable conditional 
data generating processes. The Crash of '87 resulted in such large and abrupt changes in stock volatility that it is not 
~rfectly clear that the assumption of stability is valid over this period. 
Note that, in practice, we would combine forecasts only if we did not have access to forecasters' information sets. 

However, we obviously do have the information sets used to produce both of our individual forecasts. The application 
to conditional variance forecasts in our paper should therefore be viewed primarily as an exercise to compare the 
combining methods. Use of ANNs to forecast stock volatility using all available information is the subject of related 
work in Donaldson and Kamstra (1994). 
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specifications for our ANN(k, p) models outlined in equations (1)-(3): SP500= (0, 1); 
NIKKEI = (0, 2); TSEC = (1, 1); FrSE = (0, 1). Notice that three of the four data series do not 
require linear terms (i.e. k = 0) and that, in all cases, our cross-validation procedure selects only 
one or two nonlinear nodes. The implications of these particular model specifications for 
forecast combining are discussed below. 

Given our model specifications, we next use the 1 January 1980 to 21 June 1983 data to 
estimate P weights for AVE, OLS and MAD-and p, y weights for ANN-to obtain one-step­
ahead out-of-sample combined forecasts for 22 June 1983. Having done this, we update our 
information set by one day to obtain new weights and new one-step-ahead out-of-sample 
combined forecasts for 23 June 1983. This updating/combining/forecasting procedure is 
recursively repeated until we have obtained combined one-step-ahead out-of-sample forecasts 
for each of our four combining models-AVE, OLS, MAD and ANN-on each of the four 
stock indices we study-SP500, NIKKEI, TSEC and FrSE-for the period 22 June 1983 to 
September 30, 1987. These are the out-of-sample forecasts used to evaluate the performance of 
the combining models. 

COMPARING FORECASTS 

In this section we evaluate the out-of-sample forecasting ability of our various combining 
models. When considering our evidence, it is particularly important to note that all of our 
tests focus on out-of-sample comparisons of the combining models, as obtained with the 
procedure described above. Since we look exclusively at out-of-sample comparisons of the 
combining methods, we do not automatically favour the method with the most flexibility to fit 
the data in sample; i.e. the ANN method. While ANN would clearly be expected to dominate 
in sample, since it nests the fully linear specification as a special case, there is in fact no 
guarantee that ANN will dominate out of sample. Indeed, it is possible that ANN could overfit 
the data in sample and thus produce out-of-sample ANN forecasts that are inferior to forecasts 
from the simpler linear combining models. By focussing on out-of-sample tests we are 
therefore better able to assess the practical significance of going to a nonlinear ANN 
specification in environments in which forecasters are trying to predict unknown future 
events. 

Summary statistics 
We begin our assessment of the various combining methods by comparing the models' abilities 
to reproduce broad features of the data. To this end, we present in Table I some summary 
statistics on the various individual and combined volatility forecasts, and on the implied 
standardized returns from our various individual and combining models, for the out-of-sample 
period 22 June 1983 to 30 September 1987. The first two columns in Table I list the index name 
and forecast method, respectively. 

Columns three and four of Table I report the mean and standard deviation of actual 
stock returns volatility for each index, as well as the mean and standard deviation of the 
stock volatility forecasts produced by each individual and combined model. We would 
expect the mean of the various volatility forecasts to be similar to the actual mean for 
each series and the standard deviation of the forecasts to be smaller than the standard 
deviation of the actual data. This is true for every combining method except MAD. Forecasts 
of volatility produced by the MAD combining method are typically one half to one third the 
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Table I. Out-of-sample statistics for stock returns and volatility from 22 June 1983 to 30 September 1987 

Volatility Forecasts Standardized returns 
Index Forecast Mean St. dev Standard Excess ARCH 
name method xlO- s xlO-s deviation Skewness kurtosis p-value 

SP500 Actual 7.02 13.51 1.00 -0.12 1.75 0.062 
MAV 6.92 3.36 1.07 0.03 1.37 0.336 
GAR 6.94 2.38 1.02 -0.03 1.28 0.474 
AVE 6.93 2.81 1.04 -0.00 1.31 0.420 
OLS 6.82 1.71 1.02 -0.12 1.61 0.482 
MAD 2.50 0.82 1.73 -0.12 1.75 0.056 
ANN 6.83 1.42 1.02 -0.11 1.77 0.377 

NIKKEI Actual 5.52 12.08 1.00 -0.32 2.89 0.000 
MAV 5.48 4.83 1.11 -0.62 2.95 0.009 
GAR 5.12 4.46 1.07 -0.61 2.28 0.709 
AVE 5.30 4.37 1.06 -0.61 2.47 0.309 
OLS 4.99 3.78 1.05 -0.51 1.82 0.209 
MAD 1.86 1.52 1.73 -0.53 1.76 0.160 
ANN 4.97 3.90 1.05 -0.49 1.72 0.068 

FTSE Actual 8.80 12.47 1.00 -0.24 0.10 0.000 
MAV 8.81 6.02 1.20 0.06 1.86 0.048 
GAR 10.14 3.38 0.94 -0.26 -0.02 0.786 
AVE 9.48 4.52 1.01 -0.24 0.18 0.180 
OLS 9.30 3.14 0.98 -0.28 -0.04 0.656 
MAD 4.23 1.32 1.45 -0.28 -0.03 0.735 
ANN 9.64 3.45 0.97 -0.29 0.04 0.461 

TSEC Actual 3.55 6.51 1.00 0.06 1.37 0.001 
MAV 3.55 2.53 1.17 om 4.52 0.778 
GAR 6.87 3.66 0.77 0.24 2.47 0.002 
AVE 5.21 2.53 0.85 0.04 1.52 0.841 
OLS 4.92 2.03 0.88 -0.02 1.99 0.942 
MAD 1.60 0.70 1.52 om 1.51 0.995 
ANN 4.74 1.87 0.90 0.01 2.04 0.966 

magnitude of the other models' forecasts, on average, with a correspondingly smaller standard 
deviation. 9 

Columns five to ei&ht of Table I report statistics on the standardized residual returns from 
each index; i.e. ir!-.JF,. When divided by its forecasted standard deviation {F" the returns 
residuals i, should have a standard deviation of 1, as seen down column five in the 'Actual' 
rows of Table I (where actual return residuals are divided by their actual standard deviations). It 
is therefore interesting to note from column five that, for the AVE, OLS and ANN combining 
methods, standard deviations of the forecasted standardized returns are generally within 15% of 
their desired value of one. Conversely, MAD delivers standardized returns with standard 
deviations much greater than unity, consistent with the downward bias of the MAD conditional 
variance forecasts observed in column four. In terms of higher moments, it is well known (e.g. 

"Mechanically this occurs because, while the estimated coefficients on the MAV and GARCH individual forecasts for 
all combining models except MAD sum close to unity, the estimated MAD coefficients on the MA V and GARCH 
individual forecasts sum well below unity without a compensatingly large Pu estimate. This may occur because the 
MAD estimation method relies on symmetry of the forecast error about its mean and, as Table I reveals, this is 
unlikely to be satisfied when modelling conditional variances of stock returns. Conversely, weight selection by 
methods such as OLS is remarkably robust to non-normal distributions, if not to outliers. 
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Bollerslev et al. 1991) that no volatility model yet developed can fully account for all the 
skewness and excess kurtosis in stock market data and, as seen in columns six and seven, our 
models are no exception. 

Column eight of Table I reports the p-value from an LM test of the null hypothesis that the 
standardized residuals do not display autoregressive conditional heteroscedasticity at 24 lags. As 
expected, the actual data generally display strong evidence of ARCH (i.e. p-values near zero). 
Stock volatility-forecasting models are designed to remove ARCH from returns without 
changing the lower moments of the standardized returns distribution. A reliable method for 
combining volatility forecasts should therefore also have this property. It is thus interesting to 
note, from column eight of Table I, that all our combining models remove ARCH even when 
the individual forecasts being combined do not. For example, GARCH does not remove ARCH 
in the TSEC at the 1 % level of significance (p = 0.002) but all the combining methods do. This 
occurs because the MA V and GARCH forecasts are somewhat independent so that, during time 
periods when one model fails to capture ARCH, the other model may not fail. Thus, assuming 
that each forecast has some relevant information that is not contained in the other forecast, the 
combined forecast is less likely to fail to capture ARCH effects than either of the individual 
MA V or GARCH models alone. The non-overlapping nature of information in MA V and 
GARCH is substantiated with the encompassing tests below. 

Mean and absolute forecast errors 
Table II reports the root mean squared forecast error (RMSE) and root mean absolute forecast 
error (RMAE) for each of the individual models and each of the combining methods for the 
out-of-sample period 22 June 1983 to 30 September 1987. In terms of RMSE, the OLS and 
ANN combined forecasts share common performance characteristics with both models 
generally performing as well as, or better than, the other models. Only the performance of the 
MAD combining method is noticeably worse than that of its competitors in terms of RMSE. 
Conversely, as we would expect, the Mean Absolute Deviations combined forecast has 
consistently lower mean absolute errors than the other models. The ANN and OLS forecasts 
again perform about the same, with both having lower RMAE than the simple AVE combined 
forecast. 

On the basis of absolute errors alone, we would select MAD as the 'best' combining method 
while, on the basis of squared errors alone, ANN or OLS would be preferred. However, these 
comparisons do not account for the issues raised in the previous section in which we 
documented the failure of MAD to capture key features of the data being forecasted. 
Furthermore, neither comparison by RMSE nor by RMAE provides us with an indication of 

Table II. Root mean squared error and root mean absolute error for out-of-sample from 22 June 1983 to 
September 1987 

Index -7 SP500 NIKKEI FfSE TSEC 
Forecast RMSE RMAE RMSE RMAE RMSE RMAE RMSE RMAE 
Method J, xlO-4 x 10-3 X 10-4 xlO- 3 xlO-4 xlO- 3 xlO-4 xlO- 3 

MAV 1.36 8.71 1.17 7.69 1.30 9.30 0.66 6.21 
GAR 1.35 8.66 1.16 7.48 1.24 9.40 0.77 7.66 
AVE 1.35 8.68 1.16 7.53 1.25 9.30 0.68 6.83 
OLS 1.35 8.62 1.16 7.46 1.23 9.22 0.67 6.73 
MAD 1.42 7.94 1.23 7.02 1.31 8.64 0.67 5.63 
ANN 1.35 8.62 1.17 7.46 1.24 9.30 0.67 6.65 
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whether anyone model's performance is significantly better than that of other models, in a 
formal statistical sense. We therefore investigate in the next section an additional means of 
comparison between forecasting models that allows for tests of significantly better 
performance: comparison by forecast encompassing. 

Encompassing tests 
The test for encompassing-in-forecast we employ was introduced by Chong and Hendry (1986) 
and applied to the out-of-sample comparison of combined forecasts by Hallman and Kamstra 
(1989). This test formalizes the intuition that model j should be preferred to model k if model j 
can explain what model k cannot explain, without model k being able to explain what model j 
cannot explain. As such, the test provides a useful method for ranking out-of-sample forecasts. 

The formal test for encompassing in forecast is based on a set of OLS regressions of the 
forecast error from one model on the forecast from the other model. Thus, letting Ej be model 
j's forecast error and Fk be model k's forecast, the tests for encompassing involve testing for 
significance of the e, parameter in the regression 

Ejt = eo + e\ Fkt + 1] t (4) 

Given forecasts from two models, j and k, we test the null hypothesis that neither model 
encompasses the other. We first regress the forecast error from model j on the forecast from 
model k, as in equation (4). Call this 'regression jk' and the resulting estimate of the 8, 
coefficient 8, Uk). We then regress the forecast error from model k on the forecast from model 
j. Call this 'regression kj' and the resulting 8, estimate 0, (kj). If 0, Uk) is not significant at 
some predetermined level, but 0, (kj) is significant, then we reject the null hypothesis that 
neither model encompasses the other in favour of the alternative hypothesis that model j 
encompasses model k. Conversely, if 0, (kj) is not significant, but 0, Uk) is significant, then we 
say that model k encompasses model j. However, if both 0, (kj) and 0, Uk) are significant, or if 
both 0, (kj) and 0, Uk) are not significant, then we fail to reject the null hypothesis that neither 
model encompass the other. Multicollinearity can lead to both estimated coefficients being 
insignificant, while sufficiently non-overlapping information sets can lead to both estimated 
coefficients being significant. 

Columns three to eight of Table III contain p-values associated with the heteroscedasticity­
robust t-statistics on 8, for all possible j-k comparisons. P-values less than 0.010 reveal that the 
forecast from the model listed along the top of the table explains, with 1 % significance, the 
forecast error from the model listed down the left side of the table and thus that the model listed 
down the side cannot encompass the model listed along the top, at the 1 % level. For example, 
the p-value of 0.942 in the ANN row and AVE column of Table III in the TSEC reveals that the 
AVE combining method's forecast of volatility on the Toronto Stock Exchange Composite 
Index does not explain the ANN combining method's forecast error at the I % significance level. 
Conversely, the p-value of 0.000 in the ANN column and AVE row for the TSEC reveals that 
the ANN forecast can indeed explain pan of the A VE forecast error at the I % level. Thus, from 
these two p-values, one would conclude that ANN encompasses AVE at the 1 % level in the 
TSEC. 

Pairwise comparisons for encompassing, as conducted in the preceding example, reveal that 
ANN is the only model whose forecast is not encompassed by at least one other forecast in at 
least one index at the 1 % level of significance. Every other model is encompassed at least once. 
For example, ANN encompasses AVE in the SP5OO, FTSE and TSEC. ANN also encompasses 
OLS in the TSEC and encompasses MAD in the NIKKEI. Thus, we conclude that ANN is 
significantly preferred to other forecast combining techniques on the basis of encompassing tests. 
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Table ill. Tests forout-of-sample forecast encompassing p-values on 9 1 from: Eit= 90 + (JI Fkt+ l1t 

Forecast Fkt from J, 
Forecast M G A 0 M A 

Index error Ejt A A V L A N 
name..L. fromt V R E S D N 

SP500 MAV 0.000 0.000 0.003 0.194 0.000 
GAR 0.011 0.011 0.008 0.038 0.000 
AVE 0.000 0.001 0.005 0.092 0.000 
OLS 0.970 0.799 0.930 0.006 0.032 
MAD 0.032 0.029 0.028 0.375 0.600 
ANN 0.794 0.847 0.944 0.559 0.210 

NIKKEI MAV 0.635 0.059 0.245 0.401 0.116 
GAR 0.725 0.268 0.141 0.195 0.119 
AVE 0.092 0.248 0.182 0.278 0.113 
OLS 0.934 0.750 0.903 0.593 00409 
MAD 0.000 0.001 0.000 0.001 0.003 
ANN 0.825 0.707 0.753 0.445 0.541 

FTSE MAV 0.000 0.000 0.000 0.000 0.000 
GAR 0.115 0.059 0.091 0.050 0.141 
AVE 0.000 0.000 0.000 0.000 0.000 
OLS 0.106 0.152 0.109 0.093 0.104 
MAD 0.173 0.066 0.115 0.127 0.173 
ANN 0.019 0.108 0.031 0.041 0.044 

TSEC MAV 0.785 0.157 0.016 0.000 0.000 
GAR 0.581 0.000 0.000 0.022 0.017 
AVE 0.002 0.005 0.000 0.001 0.000 
OLS 0.249 0.539 00407 0.004 0.000 
MAD 0.203 0.218 0.170 0.445 0.527 
ANN 0.239 0.712 0.924 0.014 0.032 

CONCLUSIONS 

The preponderance of the statistical evidence presented above suggests that ANN combined 
forecasts generally outperfonn forecasts from a variety of traditional combining methods in the 
international stock market data we employ. The practical significance of this result is evident 
from the out-of-sample nature of the tests employed. Although our ANN nests traditional linear 
models as special cases, and would therefore be expected to dominate these models in sample, 
there was no a priori guarantee that ANNs would dominate out of sample, especially if the 
ANNs overfit the in-sample data. The fact that our ANNs did out-perfonn traditional models in 
the out-of-sample tests therefore reveals that flexible ANNs may be preferred to more restrictive 
traditional models in environments in which forecasters are actually trying to predict unknown 
future events. 

The reason for the ANNs' relative success is seen in Figure 2, which plots the ANN and OLS 
combining functions for the TSEC data. The curved surface of crosses in Figure 2 plots the 
functional relationship-estimated on the in-sample data 1 January 1980 to 21 June 
1983-between the MA V and GARCH individual forecasts and the ANN combined forecast. 
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Similarly, the flat surface of circles reveals the way in which the MA V and GARCH individual 
forecasts are combined to produce the OLS forecast. The pillars rising up from the floor of 
Figure 2, to pierce the forecasting surfaces, represent the actual out-of-sample data points-22 
June 1983 to 30 September 1987-which the OLS and ANN models combine (the height of the 
pillars is slightly raised so that they are easily visible through the surfaces). The surfaces in 
Figure 2 therefore indicate the difference in response we can expect from the ANN and OLS 

COMBINED 

2.13 

1.46 

0.79 

0.12 
4.13 4.13 

0.00 0.00 

2.75 
GARCH 

OLS Combining Surface: Circles 
ANN Combining Surface: Crosses 

Data Points: Pillars 
Figure 2. Forecasts for TSEC volatility. Values scaled up by 10,000. 
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models for various pairs of GARCH-MAV forecast inputs, while the pillars provide some 
indication as to whether the differences in response are relevant for the out-of-sample period we 
investigate. We expect to find statistically important differences between the ANN and OLS 
combined forecasts when the surfaces are dissimilar in the range where the forecasts (i.e. 
pillars) occur. 

The nonlinear nature of the ANN is easily seen in Figure 2 as the ANN surface lies above the 
OLS when both MA V and GARCH are small and when either the MA V or GARCH are very 
large. However, the ANN surface scoops below the OLS surface in the area where MA V and 
GARCH yield similar forecasts. As seen by the cluster of pillars in the centre front of Figure 2, 
many of the data points occur in the area where the OLS and ANN forecasting functions 
intersect. Thus, we would expect the ANN and OLS combined forecasts to produce forecasts of 
return variance and standardized returns which are quite similar on average and, as revealed by 
the statistics in Tables I and II, this is indeed the case. However, from Figure 2 we also see that 
numerous data points occur away from the curve intersections (e.g. in the centre and edges of 
the figure). Since the ANN and OLS combining functions are quite different in this region, we 
would also expect to see some important differences between the ANN and OLS forecasts, and 
we do. Indeed, the differing functional treatment of these out-of-sample data points accounts 
for the ANN's ability to encompass the OLS forecast in Table III for TSEC at the 0.1 % level of 
significance. 

Results similar to those in Figure 2 can be demonstrated for the other stock market indices 
and traditional combining methods we study. In sum, combining with ANNs produces out-of­
sample forecasts that are in general at least as accurate (and often considerably more accurate) 
than forecasts produced by a variety of traditional techniques. We have shown that the 
superiority of our ANN combined forecasts arises because of the ANN's flexibility to account 
for potentially complex nonlinear relationships not easily captured by traditional linear 
combining methods. 
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