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INTERVAL FORECASTING 
An Analysis Based Upon ARCH-quantile Estimators 

C.W.J. GRANGER, Halbert WHITE and Mark KAMSTRA* 
University of California San Diego. La Jolla, CA 92093, USA 

In this paper we explore techniques for obtaining interval forecasts based on estimated time-series 
models for processes which may exhibit autoregressive conditional heteroskedasticity (ARCH). To 
deal with the available variety of possible interval forecasts, we propose a method for combining 
these forecasts based on quantile regression techniques. Our approach is practical rather than 
theoretical, with attention focused directly on obtaining interval forecasts for two U.S. time series: 
a measure of unemployment and a Treasury bill rate. We evaluate the performance of our 
procedures using a variety of diagnostics. We find interval estimates which perform reasonably 
well, judged by both in-sample and out-of-sample criteria. Our experience suggests that a certain 
amount of care is required in order to obtain useful forecasts. 

1. Introduction 

All major economies produce many forecasts of the most important eco
nomic variables, such as GNP growth, prices, and unemployment rates; 
however, in virtually all cases only point forecasts are provided. When forecast 
errors are normally distributed with constant variance, confidence intervals, at 
any desired level, can be easily provided. However, assumptions of constant 
variances or normality are often at odds with the evidence of the data. In this 
paper we take a general, empirical approach to the question of estimating 
specified quantiles, possibly time-varying, to indicate forecast uncertainty. For 
concreteness and because of their ready interpretability, we focus on the 25% 
and 75% quantiles. We also discuss results for the 10% and 90% quantiles. 

Our strategy is to form a univariate model to forecast conditional means or 
medians, and then to consider several different ways to estimate time-varying 
quantiles from this model's residuals. When several different quantile estimates 
are available, these are combined using methods of quantile regression. We 
evaluate the resulting time-varying quantiles using simple time-series methods. 
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The techniques are applied to two U.S. series, an unemployment rate and a 
Treasury bill rate. To allow for possible non-linearity in the behavior of these 
series, both levels and logarithms of the series are modelled. The ultimate aim, 
however, is taken to be finding good approximations to the quantiles of the 
levels. To this end, we examine the behavior of four time series, both 
'in-sample' and later 'out-of-sample' for evaluation purposes. The series are: 
(a) the U.S. unemployment rate, monthly, February 1948 through February 
1986, denoted UE; (b) the logarithm of UE, denoted LUE; (c) the yield to 
maturity for 12-month U.S. Treasury bills aged 11 months, monthly, Septem
ber 1964 through December 1985, denoted TB; (d) the logarithm of TB, 
denoted LTB. 

2. Modeling the conditional mean and variance processes 

Consider a univariate time series Yt and let ft(y) be the conditional 
probability density function of Yt conditional on the information set 1t- 1: Yt-J' 

j ~ 1. The conditional mean is mt =" EIYt11t-d with deviation et = Yt - mt. The 
conditional variance of Yt is V, =" E[e;11t_d. We also define 0t =" v,1/2. Model
ing m t using Box-Jenkins techniques is common, but only recently has 
attention been paid to modeling v,. A class of models for V, has been 
proposed by Engle (1982) called ARCH models, with specification 

q 

vt ( 0:) = L O:je;_j + 0:0' 
j=1 

qEN. (2.1 ) 

Note that vt ( 0:) is positive if all coefficients 0: j are positive. ARCH models are 
usually estimated by maximum likelihood, assuming that e tl 0t is i.i.d. 
standard normal or standard t. As we avoid such specific assumptions, the 
following initial analysis is appropriate. 

(i) Univariate Box-Jenkins procedures using heteroskedasticity-consistent 
standard errors (a protection against ARCH) give us useful specifications 
for mt. For simplicity, we consider only ARMA(p,O) specifications in Yt= 
x t - x t- 1' where X t is the level or logarithm of UE or TB. Thus, we 
obtain estimated autoregressive models for the difference in levels and the 
difference in logarithms for our series. 

(ii) The squared estimated residuals e; were then put into the (heteroskedas
ticity-consistent) Box-Jenkins identification process. Appropriate models ex
plaining e; in terms of e;_j' j ~ 1, and possible other explanatory variables 
were considered. This leads to an estimated model for V, for the differences in 
levels and logarithms for our series. 

This modeling process yields AR(12) models for the change in unemploy
ment and also for the change in log unemployment, with significant terms at 
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lags 1,2,10,12 (and lag 3 for logs). For changes in levels, R2 = 0.21; for 
changes in logarithms, R2 = 0.17. AutOregressive models for the squared 
residuals found (one-sided) significant lagged terms only for changes in levels 
(lag 3) and, using lags up to 11, gave R2 values less than O.OS. Treasury bill 
rates were found to be effectively random walks. The residuals squared showed 
some structure, particularly for changes in levels. An AR model, using lags 
1,4,12, gave an R2 of 0.18. However, for logarithms of rates we found an R2 
of only 0.07. All of the estimated models were overfit, in that all lags having 
I-statistics greater than one in absolute value were retained. Details of the 
models fitted are available from the authors. 

These estimated models give us estimates of m t, al' and et. If et is condition
ally normal, the search for (time-varying) quantiles is easily concluded. 
For 2S% and 7S% quantiles these are mt ± 0.674Sat (for 10% and 90%, 
m t ± 1.282at). However, although these provide candidate estimates for the 
required quantiles, they are based on strong assumptions. As we do not wish 
to rely too heavily on such assumptions, we now consider some appropriate 
alternatives. 

3. Simple quantile estimators 

The statistics of this section make direct use of our estimates of m I' e I' and 
at. With normal errors in the change in levels equations, the 7S% quantile is 

where m t and at are now estimates from steps (i) and (ii) above for the change 
in levels. With normal errors in the change in logarithms equations, the 7S% 
quantile for the change in levels is 

where iii t and ~ are estimates from steps (i) and (ii) for the change in 
logarithms, and x t - 1 is the relevant lagged level. 

These estimates rely heavily on normality. Analogous estimates which avoid 
this are 

where Q075 is the empirical 7S% quantile (the [3n/4]-order statistic) of the 
standardiied residuals e/at and QO.75 is the empirical 7S% quantile of the 
standardized residuals e/~, where et is obtained from the change in loga-
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Table 1 

Summary statistics for in-sample and out-of-sample performance of raw interval estimates/ 
forecasts. a 

50% intervals 

Number Number Average 
in sample out of sample Low /In/Highb Autocorrelation" interval width 

In Out of In Out of In Out of 
Low In High Low In High sample sample sample sample sample sample 

Unemployment 

Z2 69 164 67 33 73 27 2.64 1.67 4.96 7.53 0.27 0.27 
Z3 72 156 72 24 91 18 0.48 17.4 5.97 2.29 0.27 0.38 
Z4 75 150 75 34 70 29 0.00 0.62 0.85 6.09 0.24 0.25 
Zs 75 150 75 24 90 19 0.00 14.25 3.91 2.92 0.27 0.37 
Z6 75 150 75 34 70 29 0.00 0.74 12.09 8.89 0.20 0.20 

Dependent variable: In-sample mean = 0.002 RMSE= 0.224 
Out-of sample mean = 0.0038 RMSE=0.222 

Treasury bill rate 

XlO- 3 XlO- 3 

Z2 45 91 35 18 32 10 4.60 0.17 1.93 1.41 0.685 1.19 
Z3 35 96 40 17 33 10 2.30 2.30 3.10 3.31 0.643 1.13 
Z4 45 81 45 18 29 13 0.00 0.27 0.96 2.40 0.585 1.02 
Zs 42 R6 43 18 32 10 0.00 0.17 6.07 2.11 0.606 1.06 
Z6 42 86 43 19 26 15 0.00 1.6 1.73 3.92 0.55 0.55 

Dependent variable: In-sample mean = 0.496 x 10-" RMSE = 0.708 x 10- ) 
Out-of-sample mean = 0.337 X 10- 4 RMSE = 0.142 x 10- 2 

rithms. As a benchmark, we also consider the time-invariant quantile 

where 120.75 is the empirical 75% quantile (the [3n/4]-order statistic) for the 
differences in levels, YI = XI - XI-I' in sample. Similar statistics are used to 
estimate 25%, 10% and 90% quantiles. E.g., in 22/(0.25) and 2 3/ (0.25), - 0.6745 
replaces 0.6745, and QO.25 replaces Q075 in 2 4/ (0.25) and 25/(0.25). These 
quantile estimates and the derived interval estimates will be called 'raw' 
estimates. 

Table 1 gives the summary statistics which reflect the performance of the 
raw interval estimates generated by the raw quantile estimators. These statis
tics measure: (1) 'low/in/high': the extent of the bias, i.e., the departure of 
the interval estimates from the theoretical performance level of, e.g., 25% of 
observed values lying below the estimated 0.25 quantile, 50% lying within the 
estimated 0.25 and 0.75 quantiles, and 25% lying above the estimated 0.75 
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Table 1 (continued) 

Summary statistics for in-sample and out-of-sample performance of raw interval estimators/ 
forecasts. a 

80% intervals 

Number Number Average 
in sample out of sample Low /In/Highb AutocorrelationC interval width 

In Out of In Out of In Out of 
Low In High Low In High sample sample sample sample sample sample 

Unemployment 

22 31 242 26 11 110 12 0.58 0.32 2.41 3.58 0.51 0.52 
23 27 242 30 5 121 7 0.31 8.17 1.95 4.42 0.52 0.74 
24 30 239 30 11 109 13 0.00 0.15 2.64 2.74 0.50 0.52 
25 30 239 30 5 122 6 0.00 5.26 2.64 3.46 0.51 0.72 
26 30 239 30 16 102 15 0.00 0.95 24.04 4.54 0.60 0.60 

Treasury bill rate 

xlO- 3 xlO- 3 

22 12 139 20 7 49 4 2.05 0.85 1.87 2.85 1.30 2.26 
23 15 140 16 7 49 4 0.40 0.85 3.33 7.65 1.23 2.15 
24 l7 137 l7 9 49 2 0.00 4.19 4.18 0.96 1.31 2.27 
25 l7 137 17 8 47 5 0.00 0.85 2.03 10.44 1.19 2.08 
26 18 136 l7 12 44 4 0.05 1.17 10.52 8.86 1.22 1.22 

aLet d, = 1 if x, > 2,(0.75), d, = 0 if 2,(0.25) S; x, S; 2,(0.75), d, = -1 if x, < 2,{0.25), t = 
1, ... , n. 

bLow/In/High = (DI - n/4)2/(n/4) + (Do - n/2)2/(n/2) + (D_I - n/4)2/(n/4), where 
Dj = #[t: d,=i] for 50% intervals, with n/IO and 8n/1O replacing n/4 and n/2 for 
80% intervals. With no bias, it is reasonable to expect that this statistic is distributed 
asymptotically as x~ for the out-of-sample results. The distribution for the within-sample results 
remains to be verified. 

CAutocorrelation = L:~ -I L~~ -I (D'l - Dj~/n)2/( D,D/n), where Dj} = #[t: d, = i, d,_1 = 
J]. With no autocorrelation, it is reasonable to expect that this statistic is distributed asymptoti
cally as xl for the out-of-sample results. The distribution for the in-sample results remains to be 
verified. 

quantile; (2) 'autocorrelation': the degree of serial correlation in a variable 
measuring whether a given observation falls below, inside or above the central 
interval estimate, and (3) the average width of the interval estimate. These 
quantities are computed both within and outside the estimation sample. The 
estimation sample ends in January 1975 for UE, giving 300 observations. For 
TB it ends in December 1979, giving 171 observations. Out-of-sample observa
tions number 133 for UE and 60 for TB. A 'good' interval estimate should 
have little evidence of bias or autocorrelation and should give a narrow 
interval on average, both in and out of sample. 

For unemployment, all raw interval estimates perform well in sample 
according to the low jinjhigh and autocorrelation measures. Out of sample, 
however, only Z2 and Z4 yield adequate interval estimates according to the 
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low/in/high and autocorrelation measures. The other two appear to give 
significantly biased intervals. Z4 yields the smallest average time-varying 
intervals. Interestingly, the time-invariant interval is narrowest for the 50% 
interval. 

For Treasury bills things are different. Here, all new statistics perform well 
both in and out of sample with respect to bias and autocorrelation (except Zs 
for the 80% interval). Unlike unemployment, the out-of-sample average inter
val widths are sometimes almost twice those in sample. Perhaps this reflects 
greater uncertainty in interest rate levels for (post-sample) years in which the 
Federal Reserve Bank changed its control rules. Of all the raw statistics, Z4 
again gives the best overall performance, both in and out of sample for 50% 
intervals, while Z3 performs well overall for 80% intervals. 

It is interesting that both series exhibit sufficient stability to allow relatively 
good out-of-sample performance for at least some raw statistics, even though 
they use parameter estimates from (i) and (ii) that are 5.5 (UE) and 2.5 (TB) 
years old on average. 

4. Combining quantile estimators 

When more than one point forecast is available, it may be possible to obtain 
a superior forecast by combining the individual forecasts [Bates and Granger 
(1969), Engle, Granger and Kraft (1985)]. We now propose a method for 
combining raw quantile estimators to obtain potentially superior interval 
forecasts. 

We first introduce an additional quantile estimator appropriate when there 
are no ARCH effects. In this case, the conditional quantile at level p is 
Q p, I = a p + QO.5, I' where Qo.s, I is the conditional median given II-I' and a p is 
a constant. Thus, we set 

where Q o.s I is the predicted value from a least absolute deviations regression 
on the diff~rence in levels using the same lags as in the model identified in step 
(i). We also use ZOI == 1, a constant. Including ZOI allows adjustment for biases 
in the raw quantile estimators. 

The method proposed for combining the raw statistics is to conduct a 
quantile regression [similar to that of Koenker and Bassett (1978)] using 
appropriate subsets of the Z/s as explanatory variables. We do not include all 
the Z/s because of their high intercorrelations. 

Quantile regression coefficients yare obtained by solving 

n 

min n -1 L IYI - Z t'Y 1 (p 1 [YI 2 x I Y ] + (1 - p ) 1 [YI < Z I Y ]) , 
y /=1 
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where Yt = Zt - x t - 1 (the change in levels), Zt is the vector of explanatory 
variables, and p is the desired quantile. Here, p = 0.10,0.25,0.75,0.90. The 
criterion used is equivalent to a cost function of the form C( e) = a I e I, e 2 0, 
C( e) = b I e I, e < 0, so if a '* b, the cost function is a 'trick function'. The 
values of a and b depend on the p-value of the quantile. If a median is to be 
estimated, then p = 0.5 and a = b, giving the usual 'mean absolute deviation' 
cost function. 

The motivation for this proposal is that the estimated coefficients yare 
generally consistent for parameters y* giving an approximation Zt y* to Q p, t 

which is optimal in the sense of minimizing the expected value of the cost 
function. The combining procedure can thus be viewed as quantile estimation 
of a misspecified model for the conditional quantile. [Because the explanatory 
variables (the raw statistics) contain parameters estimated in a first stage, the 
procedure in fact amounts to two-stage quantile estimation of a misspecified 
model.] Because we are interested in forecasting, the misspecification only 
causes an approximation error and is thus not fatal. Indeed, the purpose of the 
combining is to reduce the approximation error. 

Until recently, quantile estimation has been hampered by the absence of 
sufficiently precise estimation algorithms. Even if y is consistent, rounding 
errors from pivoting operations in linear programming solutions to our mini
mization problem can easily lead to useless computed estimates y. For
tunately, there is now available software which can produce good computed 
estimates y [Fulton, Subramanian and Carson (1985»). 

Our procedure is first applied to quantile models of the form a + /3Zj' for 
each j = 1, ... ,5. If the assumptions underlying the construction of Zj are 
correct, one should expect a = 0 and /3 = 1. For the unemployment series 
these expectations are largely met, but the resulting 'adjusted' estimates and 
forecasts have properties which differ in interesting ways from those of the raw 
statistics. 

Most noticeably, all of the estimated in-sample intervals for unemployment 
appear seriously biased (results available on request). We believe that this is 
due to a few influential observations. However, two of the adjusted intervals 
perform well out of sample over a period of eleven years. Now, however, 
Z3 and Z5 appear to perform best for the 50% and 80% intervals, yielding 
unbiased intervals, not too much autocorrelation, and average interval widths 
smaller than the best widths for the raw statistics. 

For the Treasury bill series, the results are somewhat different, as the 
estimated slope coefficients are rather farther from their anticipated values. As 
with the raw satistics, the Treasury bill intervals appear to be relatively 
unbiased both in and out of sample, with little evidence of autocorrelation. 
Interestingly, the smallest out-of-sample interval width for the 50% interval is 
given by ZI' with out-of-sample performance comparable to that in sample 
(average width = 0.00054). Of the other raw statistics Z4 appears to perform 

J.Econ-D 
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Table 2 

Summary statistics for in-sample and out-of-sample performance of combined interval estimates/forecasts. 

Coefficient Number Number Average 
(standared error) in sample out of sample Low/In/High Autocorrelation interval width 

Objective In Out of In Out of In Out of 
Quantile Intercept Z1 Z3 Z4 Z5 function L?w In High Low In High sample sample sample sample sample sample 

0 
Unemployment ~ 

0.25 0.047 0.87 0.07 0.06126 
~ 
C) 

(0.024) (0.35) (0.35) i:l 
;: 

0.75 -0.058 0.44 0.47 0.06555 107 85 109 39 55 39 58.1 3.98 2.40 8.18 0.136 0.208 ~ 
(0.027) (0.46) (0.41) ~ 

0.10 0.14 0.90 0.040 
s:> 

0.11 ,-
(0.052) (0.29) (0.20) ...... 

;: 

" 0.90 -0.07 0.27 0.68 0.047 83 135 81 20 93 20 181.6 8.44 1.4 6.93 0.241 0.404 ;:J 
(0.067) (0.40) (0.23) s:> 

~ 
Treasury bill rate ~ 

~ 0.25 0.95 X 10-4 -0.80 1.11 0.148 X 10- 3 ;:;' 
(0.14 X 10- 3) (0.90) (0.33) CX) 

0.75 -0.94 X 10- 4 -1.61 1.67 0.168 X 10- 3 46 81 44 14 36 10 0.52 2.93 0.73 3.00 0.6 X 10- 3 1.18 X 10- 5 

(0.16 X 10- 3) (1.55) (0.65) 

0.10 -0.159 X 10- 3 0.81 0.72 0.833 X 10- 4 

(0.18 X 10- 3) (1.0) (0.25) 

0.90 0.108 X 10- 3 0.98 0.72 0.102 X 10- 2 19 135 17 10 45 5 0.234 3.52 2.85 6.69 1.22 X 10 3 1.91 X 10- 3 

(0.23 X 10- 3) (1.34) (0.29) 
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50% [Z 4 - Z 5) R N 0 80% (Z 1 - Z3) B R NOS 76 -8 6 

Fig.l 

best for the 50% interval. The results are different for the 80% interval. Again 
Z1 gives the narrowest interval, but shows significant autocorrelation. Z2 has 
no autocorrelation and a somewhat larger average interval. 

Next, we consider the effects of combining several different quantile estima
tors. Because of the high collinearity between the raw statistics, we consider 
only cases in which two raw statistics are combined with a constant. 

Table 2 presents some of the better results for this exercise. For 50% 
intervals for unemployment, we see apparent bias in sample, but little evidence 
of bias out of sample. The autocorrelation measure is lowest for the combina
tion of Z4 and Z5' yielding 10% smaller intervals on average than any of the 
unbiased raw intervals. Thus there appears to be some gain from combining 
the raw measures. Similar results obtain for 80% intervals; here the combina
tion of Z1 and Z3 performs best. Fig. 1 plots the resulting out-of-sample 
interval estimates for 50% and 80% intervals centered around the forecast 
value of the conditional median. 

For Treasury bill rates, combining does not yield improvements over using 
an adjusted version of Z1' We attribute this to finite-sample variation intro
duced by the estimation of an additional parameter. It is also possible that the 
relatively good out-of-sample performance of Z1 is simply a fluke. In either 
event, this reveals the need for care in combining, and that more needs to be 
known about the procedures proposed here. 
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5. Summary and concluding remarks 

In this paper we have started the study of methods for constructing quantile 
estimates for time series which provide potentially useful interval forecasts. 
Our procedure starts by modelling the conditional means and variances of the 
series and considering various' raw' quantile estimates. Combinations are then 
investigated using quantile regression estimation. The resulting estimates are 
evaluated both in and out of sample. Our examples suggest that well-behaved 
interval forecasts can be constructed and that there may be gains from 
adjusting for bias and combining. 

We emphasize that, because the methods that perform best in sample do not 
necessarily do best out of sample, further diagnostics need to be considered. 
Cross-validation methods have proven useful for cross-section data [Stone 
(1974), Efron (1983)] but are so far less developed for time series [but see 
Freedman (1986) and Carson (1987)]. At present, a sensible procedure is to 
hold back a number of observations from the estimation sample for out-of
sample evaluation and to use these results to choose the best procedure. 
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